
Yuling Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3789950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. GigaScience, 2017, 6, 1-14.	6.4	103

 $_2$ Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia) Tj ETQq0 0 $_{3.9}^{0}$ BT /Overlock 10 Tr

3	Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genomics, 2015, 16, 823.	2.8	74
4	Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLoS ONE, 2019, 14, e0223609.	2.5	69
5	Genome-wide identification and characterization of mRNAs and IncRNAs involved in cold stress in the wild banana (Musa itinerans). PLoS ONE, 2018, 13, e0200002.	2.5	61
6	Transcriptome and Phytochemical Analyses Provide New Insights Into Long Non-Coding RNAs Modulating Characteristic Secondary Metabolites of Oolong Tea (Camellia sinensis) in Solar-Withering. Frontiers in Plant Science, 2019, 10, 1638.	3.6	51
7	Growth Promotion-Related miRNAs in Oncidium Orchid Roots Colonized by the Endophytic Fungus Piriformospora indica. PLoS ONE, 2014, 9, e84920.	2.5	48
8	De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar â€Tieguanyin' compared with cultivar â€Benshan'. BMC Genomics, 2019, 20, 265.	2.8	46
9	Genome-wide identification and characterization of long non-coding RNAs involved in the early somatic embryogenesis in Dimocarpus longan Lour. BMC Genomics, 2018, 19, 805.	2.8	45
10	<i>De novo</i> transcriptome combined with spectrophotometry and gas chromatography-mass spectrometer (GC-MS) reveals differentially expressed genes during accumulation of secondary metabolites in purple-leaf tea (<i>Camellia sinensis</i> cv Hongyafoshou). Journal of Horticultural Science and Biotechnology, 2019, 94, 349-367.	1.9	36
	Science and biolectinology, 2019, 94, 549-567.		
11	Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea (<i>Camellia) Tj ETQq1 1 0.7843 12749-12767.</i>	14 rgBT /Ov	verlg <u>ç</u> k 10 Tr
11	Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea (<i>Camellia) Tj ETQq1 1 0.7843</i>	14 rgBT /Ov 2.5	verlggk 10 Tr
	Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea (<i>Camellia) Tj ETQq1 1 0.7843 12749-12767. Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin</i>	0.2	
12	Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea (<i>Camellia) Tj ETQq1 1 0.7843 12749-12767. Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis). PLoS ONE, 2017, 12, e0171173. Global scale transcriptome analysis reveals differentially expressed genes involve in early somatic</i>	2.5	33
12 13	Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea (<i>Camellia) Tj ETQq1 1 0.78433 12749-12767. Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis). PLoS ONE, 2017, 12, e0171173. Global scale transcriptome analysis reveals differentially expressed genes involve in early somatic embryogenesis in Dimocarpus longan Lour. BMC Genomics, 2020, 21, 4. Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant (<i>Camellia sinensis</i></i>	2.5 2.8	33 32
12 13 14	 Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea (<i>Camellia) Tj ETQq1 1 0.7843: 12749-12767.</i> Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis). PLoS ONE, 2017, 12, e0171173. Global scale transcriptome analysis reveals differentially expressed genes involve in early somatic embryogenesis in Dimocarpus longan Lour. BMC Genomics, 2020, 21, 4. Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant (<i>Camellia sinensis</i>) under abiotic stress and withering processing. Peerl, 2020, 8, e8432. Genome-wide identification, molecular evolution, and expression analysis provide new insights into the APETALA2/ethylene responsive factor (AP2/ERF) superfamily in Dimocarpus longan Lour. BMC 	2.5 2.8 2.0	33 32 28
12 13 14 15	 Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea (<i>Camellia) Tj ETQq1 1 0.7843:</i> 12749-12767. Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis). PLoS ONE, 2017, 12, e0171173. Global scale transcriptome analysis reveals differentially expressed genes involve in early somatic embryogenesis in Dimocarpus longan Lour. BMC Genomics, 2020, 21, 4. Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant (<i>Camellia sinensis</i>) under abiotic stress and withering processing. PeerJ, 2020, 8, e8432. Genome-wide identification, molecular evolution, and expression analysis provide new insights into the APETALA2/ethylene responsive factor (AP2/ERF) superfamily in Dimocarpus longan Lour. BMC Genomics, 2020, 21, 62. Cloning and expression analysis of betalain biosynthesis genes in Amaranthus tricolor. 	2.5 2.8 2.0 2.8	33 32 28 27

Yuling Lin

#	Article	IF	CITATIONS
19	Genome-wide identification of miRNAs and their targets during early somatic embryogenesis in Dimocarpus longan Lour Scientific Reports, 2020, 10, 4626.	3.3	26
20	Seed-Specific Gene MOTHER of FT and TFL1ï¼^MFT) Involved in Embryogenesis, Hormones and Stress Responses in Dimocarpus longan Lour International Journal of Molecular Sciences, 2018, 19, 2403.	4.1	23
21	Endogenous target mimics, microRNA167, and its targets ARF6 and ARF8 during somatic embryo development in Dimocarpus longan Lour Molecular Breeding, 2015, 35, 1.	2.1	21
22	Exploration of the Effect of Blue Light on Functional Metabolite Accumulation in Longan Embryonic Calli via RNA Sequencing. International Journal of Molecular Sciences, 2019, 20, 441.	4.1	20
23	Genome-Wide Investigation of N6-Methyladenosine Regulatory Genes and Their Roles in Tea (Camellia) Tj ETQq1 I	1 0.78431 3.6	4₁rgBT /Ov∉
24	RNA-Seq analysis reveals an essential role of tyrosine metabolism pathway in response to root-rot infection in Gerbera hybrida. PLoS ONE, 2019, 14, e0223519.	2.5	16
25	RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. PLoS ONE, 2019, 14, e0216001.	2.5	15
26	Comparative transcriptome analysis reveals a role for anthocyanin biosynthesis genes in the formation of purple peel in Minhou wild banana (Musa itinerans Cheesman). Journal of Horticultural Science and Biotechnology, 2019, 94, 184-200.	1.9	12
27	Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour. Tree Physiology, 2020, 40, 1807-1826.	3.1	12
28	DlRan3A is involved in hormone, light, and abiotic stress responses in embryogenic callus of Dimocarpus longan Lour Gene, 2015, 569, 267-275.	2.2	11
29	Molecular Characterization of MaCCS, a Novel Copper Chaperone Gene Involved in Abiotic and Hormonal Stress Responses in Musa acuminata cv. Tianbaojiao. International Journal of Molecular Sciences, 2016, 17, 441.	4.1	11
30	Colonisation of Oncidium orchid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection, stimulates accumulation of NBS-LRR resistance gene transcripts and represses their targeting micro-RNAs in leaves. BMC Plant Biology, 2019, 19, 601.	3.6	11
31	Genome-wide identification, evolution analysis of cytochrome P450 monooxygenase multigene family and their expression patterns during the early somatic embryogenesis in Dimocarpus longan Lour Gene, 2022, 826, 146453.	2.2	11
32	Exploration of the effect of blue light on microRNAs involved in the accumulation of functional metabolites of longan embryonic calli through RNAâ€sequencing. Journal of the Science of Food and Agriculture, 2019, 99, 1533-1547.	3.5	10
33	Genome-Wide Identification and Comprehensive Analyses of TCP Gene Family in Banana (Musa L.). Tropical Plant Biology, 2021, 14, 180-202.	1.9	8
34	Genome-wide identification and characterization of DEAD-box helicase family associated with early somatic embryogenesis in Dimocarpus longan Lour. Journal of Plant Physiology, 2021, 258-259, 153364.	3.5	8
35	Genome-Wide Investigation of the MiR166 Family Provides New Insights into Its Involvement in the Drought Stress Responses of Tea Plants (Camellia sinensis (L.) O. Kuntze). Forests, 2022, 13, 628.	2.1	8
36	Molecular cloning and expression analysis of KIN10 and cold-acclimation related genes in wild banana â€~Huanxi' (Musa itinerans). SpringerPlus, 2015, 4, 829.	1.2	7

Yuling Lin

#	Article	IF	CITATIONS
37	Transcriptome analysis of azacitidine (5-AzaC)-treatment affecting the development of early somatic embryogenesis in longan. Journal of Horticultural Science and Biotechnology, 2021, 96, 311-323.	1.9	7
38	Exploring the Effect of Methyl Jasmonate on the Expression of microRNAs Involved in Biosynthesis of Active Compounds of Rosemary Cell Suspension Cultures through RNA-Sequencing. International Journal of Molecular Sciences, 2022, 23, 3704.	4.1	6
39	Ras-Related Nuclear Protein Ran3B Gene Is Involved in Hormone Responses in the Embryogenic Callus of Dimocarpus longan Lour International Journal of Molecular Sciences, 2016, 17, 873.	4.1	5

Genome-wide identification and expression analysis of the SR gene family in longan (Dimocarpus) Tj ETQq0 0 0 rgBT $_{2.5}^{10}$ Coverlock 10 Tf 50

41	Genome-wide identification and expression analyses of Sm genes reveal their involvement in early somatic embryogenesis in Dimocarpus longan Lour. PLoS ONE, 2020, 15, e0230795.	2.5	5
42	Genome-wide circular RNA profiling and competing endogenous RNA regulatory network analysis provide new insights into the molecular mechanisms underlying early somatic embryogenesis in <i>Dimocarpus longan</i> Lour Tree Physiology, 2022, 42, 1876-1898.	3.1	5
43	Transcriptome Analysis Reveals Differentially Expressed Genes That Regulate Biosynthesis of the Active Compounds with Methyl Jasmonate in Rosemary Suspension Cells. Genes, 2022, 13, 67.	2.4	5
44	Isolation and characterisation of a MYB transcription factor associated with epigallocatechin-3-gallate biosynthesis in Camellia sinensis ÂL Journal of Horticultural Science and Biotechnology, 2019, 94, 41-48.	1.9	4
45	PAs Regulate Early Somatic Embryo Development by Changing the Gene Expression Level and the Hormonal Balance in Dimocarpus longan Lour Genes, 2022, 13, 317.	2.4	4
46	Genome-wide identification, expression and functional analysis of the core cell cycle gene family during the early somatic embryogenesis of Dimocarpus longan Lour Gene, 2022, 821, 146286.	2.2	4
47	Molecular characterization of miRNA genes and their expression in Dimocarpus longan Lour. Planta, 2021, 253, 41.	3.2	3
48	Genome-wide identification and characterization of the CKII gene family in the cultivated banana cultivar (Musa spp. cv Tianbaojiao) and the wild banana (Musa itinerans). PLoS ONE, 2018, 13, e0200149.	2.5	2
49	Molecular evolution and expression analysis of ADP-ribosylation factors (ARFs) from longan embryogenic callus. Gene, 2021, 777, 145461.	2.2	2
50	Identification of microRNAs involved in betalain metabolism in the green and red sectors of amaranth leaves based on Illumina sequencing data. Journal of Horticultural Science and Biotechnology, 2020, 95, 454-469.	1.9	1
51	Genome-wide identification and expression of <i>CYP71</i> gene family in response to low-temperature stress in banana. Journal of Horticultural Science and Biotechnology, 2023, 98, 159-177.	1.9	0