
Haoyu Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3789780/publications.pdf

Version: 2024-02-01

ΗλΟΥΠ ΖΕΝΟ

#	Article	IF	CITATIONS
1	Cross-Site Reliability of Human Induced Pluripotent stem cell-derived Cardiomyocyte Based Safety Assays Using Microelectrode Arrays: Results from a Blinded CiPA Pilot Study. Toxicological Sciences, 2018, 164, 550-562.	3.1	90
2	Multi-parametric assessment of cardiomyocyte excitation-contraction coupling using impedance and field potential recording: A tool for cardiac safety assessment. Journal of Pharmacological and Toxicological Methods, 2016, 81, 201-216.	0.7	58
3	Use of FDSS/μCell imaging platform for preclinical cardiac electrophysiology safety screening of compounds in human induced pluripotent stem cell-derived cardiomyocytes. Journal of Pharmacological and Toxicological Methods, 2016, 81, 217-222.	0.7	32
4	Improved Throughput of PatchXpress hERG Assay Using Intracellular Potassium Fluoride. Assay and Drug Development Technologies, 2008, 6, 235-241.	1.2	28
5	Response of human induced pluripotent stem cell-derived cardiomyocytes to several pharmacological agents when intrinsic syncytial pacing is overcome by acute external stimulation. Journal of Pharmacological and Toxicological Methods, 2018, 91, 18-26.	0.7	20
6	Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav 1.2 over-expressing cells. Toxicology and Applied Pharmacology, 2016, 308, 66-76.	2.8	18
7	HiPSC-CMs from different sex and ethnic origin donors exhibit qualitatively different responses to several classes of pharmacological challenges. Journal of Pharmacological and Toxicological Methods, 2019, 99, 106598.	0.7	15
8	Resolving the Reversed Rate Effect of Calcium Channel Blockers on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes and the Impact on In Vitro Cardiac Safety Evaluation. Toxicological Sciences, 2019, 167, 573-580.	3.1	14
9	Cardiac drug-drug interaction between HCV-NS5B pronucleotide inhibitors and amiodarone is determined by their specific diastereochemistry. Scientific Reports, 2017, 7, 44820.	3.3	13
10	Human-induced pluripotent stem cell-derived cardiomyocytes have limited I _{Ks} for repolarization reserve as revealed by specific KCNQ1/KCNE1 blocker. JRSM Cardiovascular Disease, 2019, 8, 204800401985491.	0.7	6
11	Unveiling the Lack of Inotropic Response of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes to Isoproterenol by Chronic External Stimulation. Applied in Vitro Toxicology, 2020, 6, 65-71.	1.1	1
12	Defined Solution Corrects Phenotypic Response and Improves Detection Accuracy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes to the 28 Comprehensive In Vitro Proarrhythmia Assay Standards. Applied in Vitro Toxicology, 2020, 6, 144-155.	1.1	0