Jin-Yong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3789275/publications.pdf

Version: 2024-02-01

361413 395702 1,161 47 20 33 citations h-index g-index papers 47 47 47 1111 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evaluating spatial centrality for integrated tourism management in rural areas using GIS and network analysis. Tourism Management, 2013, 34, 14-24.	9.8	102
2	Daily streamflow modelling and assessment based on the curve-number technique. Hydrological Processes, 2002, 16, 3131-3150.	2.6	62
3	Web-based GIS and spatial decision support system for watershed management. Journal of Hydroinformatics, 2005, 7, 165-174.	2.4	62
4	Web-based DSS for hydrologic impact evaluation of small watershed land use changes. Computers and Electronics in Agriculture, 2003, 39, 241-249.	7.7	59
5	Estimating water footprint of paddy rice in Korea. Paddy and Water Environment, 2014, 12, 43-54.	1.8	59
6	Assessment of the Impact of Climate Change on Drought Characteristics in the Hwanghae Plain, North Korea Using Time Series SPI and SPEI: 1981–2100. Water (Switzerland), 2017, 9, 579.	2.7	58
7	A decision support system for agricultural drought management using risk assessment. Paddy and Water Environment, 2012, 10, 197-207.	1.8	57
8	Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea. Agricultural Water Management, 2015, 152, 173-187.	5.6	52
9	Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?. Agricultural Water Management, 2015, 150, 129-138.	5.6	50
10	A Wireless Sensor Network (WSN) application for irrigation facilities management based on Information and Communication Technologies (ICTs). Computers and Electronics in Agriculture, 2017, 143, 185-192.	7.7	42
11	Assessment of water delivery efficiency in irrigation canals using performance indicators. Irrigation Science, 2016, 34, 129-143.	2.8	41
12	Development of an irrigation vulnerability assessment model in agricultural reservoirs utilizing probability theory and reliability analysis. Agricultural Water Management, 2014, 142, 115-126.	5 . 6	40
13	Estimation of design water requirement using FAO Penman–Monteith and optimal probability distribution function in South Korea. Agricultural Water Management, 2008, 95, 845-853.	5.6	39
14	Food-centric interlinkages in agricultural food-energy-water nexus under climate change and irrigation management. Resources, Conservation and Recycling, 2020, 163, 105099.	10.8	39
15	GIS BASED LONG TERM HYDROLOGIC IMPACT EVALUATION FOR WATERSHED URBANIZATION1. Journal of the American Water Resources Association, 2003, 39, 623-635.	2.4	36
16	Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea. Agricultural Water Management, 2016, 165, 163-180.	5.6	34
17	Analysis of design water requirement of paddy rice using frequency analysis affected by climate change in South Korea. Agricultural Water Management, 2012, 112, 33-42.	5.6	29
18	A spatial reasoning approach to estimating paddy rice water demand in Hwanghaenam-do, North Korea. Agricultural Water Management, 2007, 89, 185-198.	5.6	25

#	Article	IF	CITATIONS
19	A real-time online drought broadcast system for monitoring soil moisture index. KSCE Journal of Civil Engineering, 2012, 16, 357-365.	1.9	24
20	Effects of shift in growing season due to climate change on rice yield and crop water requirements. Paddy and Water Environment, 2020, 18, 291-307.	1.8	23
21	An Analysis of the Water-Energy-Food-Land Requirements and CO2 Emissions for Food Security of Rice in Japan. Sustainability, 2018, 10, 3354.	3.2	20
22	Estimation of Paddy Rice Evapotranspiration Considering Climate Change Using LARS-WG. Journal of the Korean Society of Agricultural Engineers, 2009, 51, 25-35.	0.1	18
23	Real-Time Watershed Delineation System Using Web-GIS. Journal of Computing in Civil Engineering, 2003, 17, 189-196.	4.7	17
24	Regional Climate Change Impacts on Irrigation Vulnerable Season Shifts in Agricultural Water Availability for South Korea. Water (Switzerland), 2017, 9, 735.	2.7	16
25	Estimation of Paddy Rice Crop Coefficients for FAO Penman-Monteith and Modified Penman Method. Journal of the Korean Society of Agricultural Engineers, 2006, 48, 13-23.	0.1	15
26	Effects of climate change on paddy water use efficiency with temporal change in the transplanting and growing season in South Korea. Irrigation Science, 2016, 34, 443-463.	2.8	13
27	Prediction of paddy field change based on climate change scenarios using the CLUE model. Paddy and Water Environment, $2011, 9, 309-323$.	1.8	12
28	Irrigation Canal Network Flow Analysis by a Hydraulic Model. Irrigation and Drainage, 2016, 65, 57-65.	1.7	12
29	Estimation of potential water requirements using water footprint for the target of food self-sufficiency in South Korea. Paddy and Water Environment, 2016, 14, 259-269.	1.8	12
30	Estimation of the international virtual water flow of grain crop products in Korea. Paddy and Water Environment, 2012, 10, 83-93.	1.8	11
31	Decision Support System for the Realâ€Time Operation and Management of an Agricultural Water Supply. Irrigation and Drainage, 2016, 65, 197-209.	1.7	11
32	Development of A Single Reservoir Agricultural Drought Evaluation Model for Paddy. Journal of the Korean Society of Agricultural Engineers, 2004, 46, 17-30.	0.1	11
33	Water footprint for Korean rice products and virtual water trade in a water-energy-food nexus. Water International, 2018, 43, 871-886.	1.0	9
34	Watershed Scale Drought Assessment using Soil Moisture Index. Journal of the Korean Society of Agricultural Engineers, 2006, 48, 3-13.	0.1	9
35	Estimation of Crop Virtual Water in Korea. Journal of Korea Water Resources Association, 2009, 42, 911-920.	0.2	8
36	Evaluation of external virtual water export and dependency through crop trade: an Asian case study. Paddy and Water Environment, 2017, 15, 525-539.	1.8	7

#	Article	IF	CITATIONS
37	GCMâ€related uncertainty in forecasting irrigation and design water requirement for paddy rice fields. International Journal of Climatology, 2018, 38, 1298-1313.	3.5	7
38	Trend Analysis of Projected Climate Data based on CMIP5 GCMs for Climate Change Impact Assessment on Agricultural Water Resources. Journal of the Korean Society of Agricultural Engineers, 2015, 57, 69-80.	0.1	5
39	Assessing the Resilience of Agricultural Reservoirs in Ungauged Catchments under Climate Change Using a Ratio Correction Factors-Based Calibration and Run Theory. Water (Switzerland), 2020, 12, 1618.	2.7	4
40	Evaluation of the Dependency and Intensity of the Virtual Water Trade in Korea. Irrigation and Drainage, 2016, 65, 48-56.	1.7	3
41	MONITORING OF SHALLOW GROUNDWATER SALINITY IN LIVESTOCK MANURE APPLICATIONS TO RECLAIMED TIDAL LAND. Irrigation and Drainage, 2013, 62, 63-74.	1.7	2
42	Effect of Groove Shape on Head Loss and Filtration Performance of Disc Filters. Water (Switzerland), 2021, 13, 1683.	2.7	2
43	Estimation of Water Footprint for Livestock Products in Korea. Journal of the Korean Society of Agricultural Engineers, 2015, 57, 85-92.	0.1	2
44	Irrigation and Drainage in Korea and ICT Applications. Irrigation and Drainage, 2016, 65, 157-164.	1.7	1
45	Developing Model of Drought Climate Scenarios for Agricultural Drought Mitigation. Journal of the Korean Society of Agricultural Engineers, 2012, 54, 67-75.	0.1	1
46	Estimating Blue, Green and Grey Water of Paddy Rice in Korea. , 2011, , .		0
47	<i>Irrigation Management for red pepper using high resolution weather data</i> . , 2017, , .		0