Xi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3789222/publications.pdf Version: 2024-02-01

VI ZUANC

#	Article	IF	CITATIONS
1	Hydrogen-bond relaxation dynamics: Resolving mysteries of water ice. Coordination Chemistry Reviews, 2015, 285, 109-165.	18.8	136
2	Coordination-Resolved Electron Spectrometrics. Chemical Reviews, 2015, 115, 6746-6810.	47.7	121
3	Density and Phonon-Stiffness Anomalies of Water and Ice in the Full Temperature Range. Journal of Physical Chemistry Letters, 2013, 4, 3238-3244.	4.6	116
4	Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors. Journal of Physical Chemistry Letters, 2013, 4, 2565-2570.	4.6	115
5	The hidden force opposing ice compression. Chemical Science, 2012, 3, 1455.	7.4	80
6	Size, separation, structural order and mass density of molecules packing in water and ice. Scientific Reports, 2013, 3, 3005.	3.3	76
7	High-performance polarization-sensitive photodetectors on two-dimensional <i>β</i> -InSe. National Science Review, 2022, 9, nwab098.	9.5	75
8	Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Research, 2021, 14, 1110-1115.	10.4	69
9	Coulomb Repulsion at the Nanometer-Sized Contact: A Force Driving Superhydrophobicity, Superfluidity, Superlubricity, and Supersolidity. Journal of Physical Chemistry C, 2009, 113, 20009-20019.	3.1	67
10	Enhanced Piezoelectric Effect Derived from Grain Boundary in MoS ₂ Monolayers. Nano Letters, 2020, 20, 201-207.	9.1	66
11	Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. Physical Chemistry Chemical Physics, 2014, 16, 22995-23002.	2.8	65
12	Water's phase diagram: From the notion of thermodynamics to hydrogen-bond cooperativity. Progress in Solid State Chemistry, 2015, 43, 71-81.	7.2	63
13	A common supersolid skin covering both water and ice. Physical Chemistry Chemical Physics, 2014, 16, 22987-22994.	2.8	61
14	Abnormal N-Heterocyclic Carbene Gold(I) Complexes: Synthesis, Structure, and Catalysis in Hydration of Alkynes. Organometallics, 2013, 32, 164-171.	2.3	59
15	A Symmetry-Breaking Phase in Two-Dimensional FeTe ₂ with Ferromagnetism above Room Temperature. Journal of Physical Chemistry Letters, 2020, 11, 7893-7900.	4.6	59
16	Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Physical Chemistry Chemical Physics, 2014, 16, 24666-24671.	2.8	56
17	Stability of Hydrogen-Bonded Supramolecular Architecture under High Pressure Conditions: Pressure-Induced Amorphization in Melamineâ^'Boric Acid Adduct. Langmuir, 2009, 25, 4787-4791.	3.5	54
18	Hydrogen Bond Asymmetric Local Potentials in Compressed Ice. Journal of Physical Chemistry B, 2013, 117, 13639-13645.	2.6	48

#	Article	IF	CITATIONS
19	Discriminative generation and hydrogen modulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies. Carbon, 2011, 49, 3615-3621.	10.3	47
20	Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering. Scientific Reports, 2013, 3, 3064.	3.3	47
21	Hydrogen bond network relaxation resolved by alcohol hydration (methanol, ethanol, and glycerol). Journal of Raman Spectroscopy, 2017, 48, 393-398.	2.5	41
22	Graphene nanoribbon band-gap expansion: Broken-bond-induced edge strain and quantum entrapment. Nanoscale, 2010, 2, 2160.	5.6	38
23	Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale, 2015, 7, 4475-4481.	5.6	37
24	Nanobubble Skin Supersolidity. Langmuir, 2016, 32, 11321-11327.	3.5	37
25	Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures. Nanoscale, 2010, 2, 412-417.	5.6	36
26	Zone-selective photoelectronic measurements of the local bonding and electronic dynamics associated with the monolayer skin and point defects of graphite. RSC Advances, 2012, 2, 2377.	3.6	35
27	Water molecular structure-order in the NaX hydration shells(X=F, Cl, Br, I). Journal of Molecular Liquids, 2016, 221, 788-797.	4.9	32
28	Highly efficient and robust catalysts for the hydrogen evolution reaction by surface nano engineering of metallic glass. Journal of Materials Chemistry A, 2021, 9, 5415-5424.	10.3	32
29	Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chemical Physics Letters, 2017, 678, 233-240.	2.6	31
30	Guanine binding to gold nanoparticles through nonbonding interactions. Physical Chemistry Chemical Physics, 2013, 15, 19284-19292.	2.8	29
31	Potential Paths for the Hydrogen-Bond Relaxing with (H ₂ O) _{<i>N</i>} Cluster Size. Journal of Physical Chemistry C, 2015, 119, 16962-16971.	3.1	28
32	Water Nanodroplet Thermodynamics: Quasi-Solid Phase-Boundary Dispersivity. Journal of Physical Chemistry B, 2015, 119, 5265-5269.	2.6	28
33	(H, Li)Br and LiOH Solvation Bonding Dynamics: Molecular Nonbond Interactions and Solute Extraordinary Capabilities. Journal of Physical Chemistry B, 2018, 122, 1228-1238.	2.6	28
34	Applications of density functional theory to iron-containing molecules of bioinorganic interest. Frontiers in Chemistry, 2014, 2, 14.	3.6	27
35	Base-hydration-resolved hydrogen-bond networking dynamics: Quantum point compression. Journal of Molecular Liquids, 2016, 223, 1277-1283.	4.9	26
36	The static and dynamic magnetic properties of monolayer iron dioxide and iron dichalcogenides. RSC Advances, 2016, 6, 31758-31761.	3.6	26

#	Article	IF	CITATIONS
37	From ice superlubricity to quantum friction: Electronic repulsivity and phononic elasticity. Friction, 2015, 3, 294-319.	6.4	24
38	Ice Regelation: Hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Scientific Reports, 2015, 5, 13655.	3.3	22
39	Interfacial icelike water local doping of graphene. Nanoscale, 2019, 11, 19334-19340.	5.6	22
40	HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Applied Surface Science, 2017, 422, 475-481.	6.1	20
41	Low-energy electron excitation effect on formation of graphene nanocrystallites during carbon film growth process. Applied Physics Letters, 2017, 111, .	3.3	20
42	Magnetism induced by excess electrons trapped at diamagnetic edge-quantum well in multi-layer graphene. Applied Physics Letters, 2014, 105, 042402.	3.3	18
43	Unveiling the Stimulated Robust Carrier Lifetime of Surfaceâ€Bound Excitons and Their Photoresponse in InSe. Advanced Materials Interfaces, 2019, 6, 1900171.	3.7	18
44	Unprecedented thermal stability of water supersolid skin. Journal of Molecular Liquids, 2016, 220, 865-869.	4.9	17
45	Hydration of Hofmeister ions. Advances in Colloid and Interface Science, 2019, 268, 1-24.	14.7	17
46	Ultra-strong anisotropic photo-responsivity of bilayer tellurene: a quantum transport and time-domain first principle study. Nanophotonics, 2020, 9, 1931-1940.	6.0	16
47	(Li, Na, K)OH hydration bonding thermodynamics: Solution self-heating. Chemical Physics Letters, 2018, 696, 139-143.	2.6	14
48	Numberâ€ofâ€layer resolved (Mo, W)â€(S 2 , Se 2) phonon relaxation. Journal of Raman Spectroscopy, 2017, 48, 592-595.	2.5	11
49	Monolayer InSe photodetector with strong anisotropy and surface-bound excitons. Physical Chemistry Chemical Physics, 2021, 23, 6075-6083.	2.8	11
50	XPS revelation of tungsten edges as a potential donor-type catalyst. Physical Chemistry Chemical Physics, 2011, 13, 12640.	2.8	10
51	Hydrogen-bond potential for ice VIII-X phase transition. Scientific Reports, 2016, 6, 37161.	3.3	10
52	Bias-Modulated High Photoelectric Response of Graphene-Nanocrystallite Embedded Carbon Film Coated on n-Silicon. Nanomaterials, 2019, 9, 327.	4.1	10
53	Full quantum search for high <i>T</i> _c two-dimensional van der Waals ferromagnetic semiconductors. Nanoscale, 2021, 13, 8137-8145.	5.6	10

54 NaX solvation bonding dynamics:hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4,) Tj ETQq0 0 Q rgBT /Ovgrlock 10 T

#	Article	IF	CITATIONS
55	Fraction and stiffness transition from the H O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. Journal of Molecular Liquids, 2017, 244, 415-421.	4.9	9
56	Hydrogen bond and surface stress relaxation by aldehydic and formic acidic molecular solvation. Journal of Molecular Liquids, 2018, 249, 494-500.	4.9	9
57	Unexpected Solute Occupancy and Anisotropic Polarizability in Lewis Basic Solutions. Journal of Physical Chemistry B, 2019, 123, 8512-8518.	2.6	9
58	Edgeâ€6tateâ€Enhanced Ultrahigh Photoresponsivity of Graphene Nanosheetâ€Embedded Carbon Film/Silicon Heterojunction. Advanced Materials Interfaces, 2019, 6, 1802062.	3.7	9
59	High-response heterojunction phototransistor based on vertically grown graphene nanosheets film. Carbon, 2021, 172, 720-728.	10.3	9
60	Skin-resolved local bond contraction, core electron entrapment, and valence charge polarization of Ag and Cu nanoclusters. Physical Chemistry Chemical Physics, 2014, 16, 8940.	2.8	8
61	Numberâ€ofâ€layer, pressure, and temperature resolved bond–phonon–photon cooperative relaxation of layered black phosphorus. Journal of Raman Spectroscopy, 2016, 47, 1304-1309.	2.5	8
62	Exploring the physical origin of the electrocatalytic performance of an amorphous alloy catalyst <i>via</i> machine learning accelerated DFT study. Nanoscale, 2022, 14, 2660-2667.	5.6	8
63	Coordination-resolved local bond contraction and electron binding-energy entrapment of Si atomic clusters and solid skins. Journal of Applied Physics, 2014, 115, .	2.5	7
64	Antimonene nanoribbon band-gap expansion: Bond contraction and edge quantum entrapment. Materials Chemistry and Physics, 2018, 211, 414-419.	4.0	7
65	Arsenene nanoribbon edge-resolved strong magnetism. Physical Chemistry Chemical Physics, 2018, 20, 25716-25721.	2.8	7
66	Water ice compression: Principles and applications. Journal of Molecular Liquids, 2020, 315, 113750.	4.9	7
67	Physically Compatible Machine Learning Study on the Pt–Ni Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 1573-1580.	4.6	7
68	Catalytic enhancement of gold nanocages induced by undercoordination-charge-polarization. APL Materials, 2017, 5, 053501.	5.1	6
69	Dynamics of broadband photoinduced species and enabled photodetection in MXenes. Nanophotonics, 2022, 11, 3139-3148.	6.0	6
70	Under-coordinated atoms induced local strain, quantum trap depression and valence charge polarization at W stepped surfaces. Physica B: Condensed Matter, 2012, 407, 49-53.	2.7	5
71	Atomic under-coordination fascinated catalytic and magnetic behavior of Pt and Rh nanoclusters. Physical Chemistry Chemical Physics, 2014, 16, 20537-20547.	2.8	5
72	Catalytic nature of under- and hetero-coordinated atoms resolved using zone-selective photoelectron spectroscopy (ZPS). Vacuum, 2014, 100, 87-91.	3.5	5

#	Article	IF	CITATIONS
73	Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials. Frontiers in Physics, 2017, 5, .	2.1	5
74	H ₂ O ₂ and HO ^{â^`} Solvation Dynamics: Solute Capabilities and Soluteâ€Solvent Molecular Interactions. ChemistrySelect, 2017, 2, 8517-8523.	1.5	4
75	Edge Effect on the Photodetection Ability of the Graphene Nanocrystallites Embedded Carbon Film Coated on pâ€ S ilicon. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	2.4	4
76	C–H oxidation enhancement on a gold nanoisland by atomic-undercoordination induced polarization. Physical Chemistry Chemical Physics, 2020, 22, 14458-14464.	2.8	4
77	Fast semi-analytical method for precise prediction of ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas. Applied Physics Express, 2018, 11, 056201.	2.4	3
78	Hydrogen-bond transition from the vibration mode of ordinary water to the (H, Na)I hydration states: Molecular interactions and solution viscosity. Vibrational Spectroscopy, 2018, 94, 31-36.	2.2	3
79	Effect of atomic under-coordination on the properties of Ag and Cu nanoclusters. , 2014, , .		2
80	Catalytic and Magnetic Behaviors of Excessively Charged Silver, Copper, Platinum, and Rhodium Atomic Clusters. Journal of Physical Chemistry C, 2016, 120, 17527-17536.	3.1	2
81	Supersolid Skin Mechanics of Water and Ice. Procedia IUTAM, 2017, 21, 102-110.	1.2	2
82	High Photoresponsivity of Vertical Graphene Nanosheets/P-Si Enhanced by Electron Trapping at Edge Quantum Wells. Journal of Physical Chemistry C, 2021, 125, 5392-5398.	3.1	2
83	The valence charge polarization induced by the shorter and stronger bonds between under-coordinated gold atoms. , 2010, , .		0
84	Potential Paths for the Hydrogen-Bond Relaxing With (H ₂ O) _N Cluster Size. Journal of Physical Chemistry A, 0, , 150629002906004.	2.5	0
85	Ultrasensitive Photodetector: Edge-State-Enhanced Ultrahigh Photoresponsivity of Graphene Nanosheet-Embedded Carbon Film/Silicon Heterojunction (Adv. Mater. Interfaces 11/2019). Advanced Materials Interfaces, 2019, 6, 1970073.	3.7	0
86	Bias-modulated van der Waals heterojunction photodetector of graphene nanosheets embedded carbon film/n-Si. Thin Solid Films, 2021, 734, 138834.	1.8	0