Lianghu Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3789065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feasibility of micropollutants removal by solar-activated persulfate: Reactive oxygen species formation and influence on DBPs. Water Research, 2022, 210, 117981.	5.3	33
2	New insight into the role of FDOM in heavy metal leaching behavior from MSWI bottom ash during accelerated weathering using fluorescence EEM-PARAFAC. Waste Management, 2022, 144, 153-162.	3.7	7
3	Crystal boron significantly enhances pollutants removal kinetics by Fe0/PMS system. Separation and Purification Technology, 2022, 292, 121055.	3.9	7
4	An asymmetric supercapacitor with an interpenetrating crystalline Fe-MOF as the positive electrode and its congenetic derivative as the negative electrode. Inorganic Chemistry Frontiers, 2021, 8, 4878-4886.	3.0	16
5	Fluorescence characteristics of dissolved organic matter during anaerobic digestion of oil crop straw inoculated with rumen liquid. RSC Advances, 2021, 11, 14347-14356.	1.7	11
6	Kinetic removal of acetaminophen and phenacetin during LED-UV365 photolysis of persulfate system: Reactive oxygen species generation. Chemosphere, 2021, 269, 129337.	4.2	20
7	Comparison of Biochar Materials Derived from Coconut Husks and Various Types of Livestock Manure, and Their Potential for Use in Removal of H2S from Biogas. Sustainability, 2021, 13, 6262.	1.6	21
8	Insights into the potential release of dissolved organic matter from different agro-forest waste-derived hydrochars: A pilot study. Journal of Cleaner Production, 2021, 319, 128676.	4.6	9
9	Effects of FeSO4 dosage on nitrogen loss and humification during the composting of cow dung and corn straw. Bioresource Technology, 2021, 341, 125867.	4.8	35
10	Sequestration of Sulphide from Biogas by thermal-treated iron nanoparticles synthesized using tea polyphenols. Environmental Technology (United Kingdom), 2020, 41, 741-750.	1.2	1
11	Thermophilic Solid-State Anaerobic Digestion of Corn Straw, Cattle Manure, and Vegetable Waste: Effect of Temperature, Total Solid Content, and C/N Ratio. Archaea, 2020, 2020, 1-10.	2.3	8
12	Effective gel-like floc matrix destruction and water seepage for enhancing waste activated sludge dewaterability under hybrid microwave-initiated Fe(II)-persulfate oxidation process. Chemosphere, 2019, 221, 141-153.	4.2	62
13	Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger. Chemical Engineering Journal, 2018, 345, 640-647.	6.6	67
14	Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability. Water Research, 2018, 134, 101-114.	5.3	202
15	Development of sludge-derived mesoporous material with loaded nano CaO2 and doped Fe for re-utilization of dewatered waste-activated sludge as dewatering aids. Chemical Engineering Journal, 2018, 335, 161-168.	6.6	26
16	Performance evaluation of zero-valent iron nanoparticles (NZVI) for high-concentration H ₂ S removal from biogas at different temperatures. RSC Advances, 2018, 8, 13798-13805.	1.7	20
17	Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes. Chemosphere, 2017, 175, 350-355.	4.2	40
18	Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage. Chemical Engineering Journal, 2017, 328, 35-43.	6.6	51

Lianghu Su

#	Article	IF	CITATIONS
19	Continuous micro-current stimulation to upgrade methanolic wastewater biodegradation and biomethane recovery in an upflow anaerobic sludge blanket (UASB) reactor. Chemosphere, 2017, 180, 229-238.	4.2	33
20	Exploring the potential of iTRAQ proteomics for tracking the transformation of extracellular proteins from enzyme-disintegrated waste activated sludge. Bioresource Technology, 2017, 225, 75-83.	4.8	32
21	Development of montmorillonite-supported nano CaO2 for enhanced dewatering of waste-activated sludge by synergistic effects of filtration aid and peroxidation. Chemical Engineering Journal, 2017, 307, 418-426.	6.6	39
22	Enhanced nutrient removal from lake water via biodegradation of poly(<scp>l</scp> -lactide)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends. RSC Advances, 2016, 6, 6528-6539.	1.7	4
23	The use of the core–shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion. Environmental Sciences: Processes and Impacts, 2015, 17, 2013-2021.	1.7	31
24	Copper leaching of MSWI bottom ash co-disposed with refuse: Effect of short-term accelerated weathering. Waste Management, 2013, 33, 1411-1417.	3.7	35
25	Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production. Journal of Material Cycles and Waste Management, 2013, 15, 461-468.	1.6	118
26	Chemical reduction of odour in fresh sewage sludge in the presence of ferric hydroxide. Environmental Technology (United Kingdom), 2013, 34, 165-172.	1.2	15
27	Inhibitory effects of a shock load of Fe(II)-mediated persulfate oxidation on waste activated sludge anaerobic digestion. Chemical Engineering Journal, 2013, 233, 274-281.	6.6	36
28	Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: Mechanical and microstructural perspectives. Journal of Environmental Management, 2013, 129, 183-189.	3.8	44