Pinwen Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3788976/publications.pdf

Version: 2024-02-01

		394286	377752
57	1,240 citations	19	34
papers	citations	h-index	g-index
58	58	58	1940
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 12370-12373.	6.6	335
2	Exploring Hardness and the Distorted sp ² Hybridization of B–B Bonds in WB ₃ . Chemistry of Materials, 2014, 26, 5297-5302.	3.2	80
3	Ultrastrong Boron Frameworks in ZrB ₁₂ : A Highway for Electron Conducting. Advanced Materials, 2017, 29, 1604003.	11.1	71
4	Enhanced Vickers hardness by quasi-3D boron network in MoB2. RSC Advances, 2013, 3, 18317.	1.7	53
5	Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material. Scientific Reports, 2017, 7, 43759.	1.6	47
6	Hexagonal-structured $\hat{l}\mu$ -NbN: ultra-incompressibility, high shear rigidity and a possible hard superconducting material. Scientific Reports, 2015, 5, 10811.	1.6	46
7	Ferromagnetic Properties of Y-Doped AlN Nanorods. Journal of Physical Chemistry C, 2010, 114, 15574-15577.	1.5	38
8	Discovery of Superconductivity in Hard Hexagonal Îμ-NbN. Scientific Reports, 2016, 6, 22330.	1.6	36
9	Investigating Robust Honeycomb Borophenes Sandwiching Manganese Layers in Manganese Diboride. Inorganic Chemistry, 2016, 55, 11140-11146.	1.9	31
10	Abnormal Pressureâ€Induced Photoluminescence Enhancement and Phase Decomposition in Pyrochlore La ₂ Sn ₂ O ₇ . Advanced Materials, 2017, 29, 1701513.	11.1	31
11	Carbon nano-onions: large-scale preparation, functionalization and their application as anode material for rechargeable lithium ion batteries. RSC Advances, 2016, 6, 92285-92298.	1.7	28
12	Nanotwinned diamond synthesized from multicore carbon onion. Carbon, 2017, 120, 405-410.	5.4	28
13	WB2: not a superhard material for strong polarization character of interlayer W–B bonding. Physical Chemistry Chemical Physics, 2017, 19, 8919-8924.	1.3	28
14	Exploring the coordination change of vanadium and structure transformation of metavanadate MgV2O6 under high pressure. Scientific Reports, 2016, 6, 38566.	1.6	25
15	Synthesis and Mechanical Character of Hexagonal Phase 뫉^'WN. Inorganic Chemistry, 2017, 56, 3970-3975.	1.9	25
16	Structural Phase Transition and Electrical Transport Properties of CuInS ₂ Nanocrystals under High Pressure. Journal of Physical Chemistry C, 2015, 119, 2963-2968.	1.5	22
17	Unprecedented strength in pure iron via high-pressure induced nanotwinned martensite. Materials Research Letters, 2019, 7, 354-360.	4.1	22
18	Modulating Hardness in Molybdenum Monoborides by Adjusting an Array of Boron Zigzag Chains. Chemistry of Materials, 2019, 31, 200-206.	3.2	22

#	Article	IF	Citations
19	Electronic Topological Transition in Ag2Te at High-pressure. Scientific Reports, 2015, 5, 14681.	1.6	20
20	Excellent mechanical properties of metastable c-WN fabricated at high pressure and high temperature. International Journal of Refractory Metals and Hard Materials, 2017, 66, 63-67.	1.7	18
21	Superconductivity with high hardness in Mo ₃ C ₂ . Inorganic Chemistry Frontiers, 2019, 6, 1282-1288.	3.0	16
22	Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe ₂ B. Physical Chemistry Chemical Physics, 2020, 22, 27425-27432.	1.3	15
23	Manganese borides synthesized at high pressure and high temperature. Journal of Applied Physics, 2012, 111, 112616.	1.1	13
24	Modifying microscopic structures of MoS2 by high pressure and high temperature used in hydrogen evolution reaction. Electrochimica Acta, 2020, 357, 136868.	2.6	11
25	Pressure induced structural transition of small carbon nano-onions. RSC Advances, 2016, 6, 2914-2919.	1.7	10
26	Role of TM–TM Connection Induced by Opposite d-Electron States on the Hardness of Transition-Metal (TM = Cr, W) Mononitrides. Inorganic Chemistry, 2019, 58, 15573-15579.	1.9	10
27	Lasing-Mode Switch of a Hexagonal ZnO Pyramid Driven by Pressure within a Diamond Anvil Cell. Journal of Physical Chemistry Letters, 2019, 10, 610-616.	2.1	10
28	Optical Behaviors of a Microsized Single-Crystal MAPbI3 Plate under High Pressure. Journal of Physical Chemistry C, 2019, 123, 30221-30227.	1.5	10
29	Temperature-Dependent Lasing of CsPbl ₃ Triangular Pyramid. Journal of Physical Chemistry Letters, 2019, 10, 7056-7061.	2.1	9
30	Revealing the Unusual Rigid Boron Chain Substructure in Hard and Superconductive Tantalum Monoboride. Chemistry - A European Journal, 2019, 25, 5051-5057.	1.7	9
31	An electrically conductive and ferromagnetic nano-structure manganese mono-boride with high Vickers hardness. Nanoscale, 2021, 13, 18570-18577.	2.8	9
32	Exploring the high pressure behavior of 2D and quasi-3D boron layers in MoB2. RSC Advances, 2014, 4, 52878-52882.	1.7	8
33	Modulating Band Gap of Boron Doping in Amorphous Carbon Nano-Film. Materials, 2019, 12, 1780.	1.3	8
34	Compressionâ€Driven Internanocluster Reaction for Synthesis of Unconventional Gold Nanoclusters. Angewandte Chemie - International Edition, 2021, 60, 12253-12257.	7.2	8
35	Progress in functional studies of transition metal borides*. Chinese Physics B, 2021, 30, 108103.	0.7	8
36	Insight the effect of rigid boron chain substructure on mechanical, magnetic and electrical properties of \hat{l}^2 -FeB. Journal of Alloys and Compounds, 2022, 896, 162767.	2.8	8

#	Article	IF	CITATIONS
37	Investigation the origin and mechanical properties of unusual rigid diamond-like net analogues in manganese tetraboride. International Journal of Refractory Metals and Hard Materials, 2019, 85, 104845.	1.7	7
38	Robust Hydrophobic Materials by Surface Modification in Transition-Metal Diborides. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58162-58169.	4.0	6
39	Synthesis, Characterization, and First-Principles Analysis of the MAB-Like Ternary Transition-Metal Boride Fe(MoB) ₂ . Inorganic Chemistry, 2022, 61, 11046-11056.	1.9	6
40	Revealing the Unusual Boron-Pinned Layered Substructure in Superconducting Hard Molybdenum Semiboride. ACS Omega, 2021, 6, 21436-21443.	1.6	5
41	Tailoring the d-band center by borophene subunits in chromic diboride toward the hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 5130-5138.	3.0	5
42	Constructing 1D Boron Chains in the Structure of Transition Metal Monoborides for Hydrogen Evolution Reactions. Catalysts, 2021, 11, 1265.	1.6	5
43	Pressure-induced bandgap engineering and photoresponse enhancement of wurtzite CulnS ₂ nanocrystals. Nanoscale, 2022, 14, 2668-2675.	2.8	5
44	Magnetic, Electronic, and Mechanical Properties of Bulk Îμ-Fe ₂ N Synthesized at High Pressures. ACS Omega, 2021, 6, 12591-12597.	1.6	4
45	Twinned Martensitic Substructure in a Water Quenched Fe–1.0 wt% C Alloy. Acta Metallurgica Sinica (English Letters), 2022, 35, 1157-1163.	1.5	4
46	Surface Modification towards Integral Bulk Catalysts of Transition Metal Borides for Hydrogen Evolution Reaction. Catalysts, 2022, 12, 222.	1.6	4
47	Hydrogen Evolution Reaction of \hat{I}^3 -Mo0.5W0.5 C Achieved by High Pressure High Temperature Synthesis. Catalysts, 2016, 6, 208.	1.6	3
48	Electrical Transport Properties and Band Structure of CuInSe ₂ under High Pressure. Journal of Physical Chemistry C, 2019, 123, 20757-20763.	1.5	3
49	Pressure and temperature-dependent optical properties of TiTa ₂ O ₇ . RSC Advances, 2020, 10, 25379-25384.	1.7	3
50	Lasing Behavior of a Single ZnO Nanowire Resonating in Fabry–Perot Mode under Pressure. Journal of Physical Chemistry C, 2020, 124, 7523-7530.	1.5	3
51	The discovery of a superhard P-type transparent semiconductor: Al _{2.69} B ₅₀ . Materials Horizons, 2022, 9, 748-755.	6.4	3
52	TiB2-reinforced B4C composites produced by reaction sintering at high-pressure and high temperature. High Pressure Research, 2020, 40, 245-256.	0.4	2
53	Pressure-induced structural phase transition in corundum-related class Cu ₃ TeO ₆ . High Pressure Research, 2021, 41, 318-327.	0.4	2
54	Emerging High Coercivity and Huge Exchange Bias Effect in Single Phased Mn 1â^' x Ru x Co 2 O 4 Compounds. Advanced Electronic Materials, 2019, 5, 1900572.	2.6	1

#	Article	IF	CITATIONS
55	Unusual suppression of tungsten 5d electron depletion in superhard tungsten tetraboride solid solution with chromium under compression. Journal of Physics Condensed Matter, 2022, 34, 035401.	0.7	1
56	Synthesis and high-pressure studies of strontium diazenide by synchrotron X-ray diffraction and DFT calculations. RSC Advances, 2020, 10, 26308-26312.	1.7	0
57	Compressionâ€Driven Internanocluster Reaction for Synthesis of Unconventional Gold Nanoclusters. Angewandte Chemie, 2021, 133, 12361-12365.	1.6	0