Keyou Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3788908/publications.pdf

Version: 2024-02-01

840776 839539 27 343 11 18 h-index citations g-index papers 28 28 28 273 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Probing the Damage Recovery Mechanism in Irradiated Stainless Steels Using In-Situ Microcantilever Bending Test. Frontiers in Materials, 2022, 9, .	2.4	О
2	Observations of radiation-enhanced ductility in irradiated Inconel 718: Tensile properties, deformation behavior, and microstructure. Acta Materialia, 2022, 231, 117889.	7.9	7
3	Improved irradiation resistance of accident-tolerant high-strength FeCrAl alloys with heterogeneous structures. Acta Materialia, 2022, 231, 117843.	7.9	16
4	Identifying chemically similar multiphase nanoprecipitates in compositionally complex non-equilibrium oxides via machine learning. Communications Materials, 2022, 3, .	6.9	1
5	Irradiation-induced amorphization of Fe-Y-based second phase particles in accident-tolerant FeCrAl alloys. Materialia, 2021, 15, 101016.	2.7	4
6	Microstructure and microchemistry of laser welds of irradiated austenitic steels. Materials and Design, 2021, 206, 109764.	7.0	12
7	Effect of heterogeneous microstructure on the tensile and creep performances of cast Haynes 282 alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2021, 828, 142099.	5. 6	4
8	Role of cavities on deformation-induced martensitic transformation pathways in a laser-welded, neutron irradiated austenitic stainless steel. Scripta Materialia, 2020, 178, 1-6.	5. 2	22
9	Effect of laser welding on deformation mechanisms in irradiated austenitic stainless steel. Journal of Nuclear Materials, 2020, 528, 151878.	2.7	14
10	In-situ Micromechanical Testing of Neutron Irradiated FeCrAl Alloys. Microscopy and Microanalysis, 2020, 26, 646-647.	0.4	2
11	The role of irradiation on deformation-induced martensitic phase transformations in face-centered cubic alloys. Journal of Materials Research, 2020, 35, 1660-1671.	2.6	10
12	Thermal Aging and the Hall–Petch Relationship of PM-HIP and Wrought Alloy 625. Jom, 2019, 71, 2837-2845.	1.9	12
13	Effect of proton irradiation on anatase TiO2 nanotube anodes for lithium-ion batteries. Journal of Materials Science, 2019, 54, 13221-13235.	3.7	19
14	Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304L stainless steel. Materialia, 2019, 5, 100208.	2.7	35
15	Microstructure-property relationship for AISI 304/308L stainless steel laser weldment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 234-243.	5. 6	34
16	Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690. Jom, 2018, 70, 2218-2223.	1.9	6
17	Effects of corrosion-inhibiting surface treatments on irradiated microstructure development in Ni-base alloy 718. Journal of Nuclear Materials, 2018, 512, 276-287.	2.7	10
18	Investing in a permanent and sustainable nuclear waste disposal solution. Progress in Nuclear Energy, 2018, 108, 474-479.	2.9	24

Keyou Mao

#	Article	IF	CITATION
19	Laser weld-induced formation of amorphous Mn–Si precipitate in 304 stainless steel. Materialia, 2018, 3, 174-177.	2.7	6
20	Development of void fraction-quality correlation for two-phase flow in horizontal and vertical tube bundles. Progress in Nuclear Energy, 2017, 97, 38-52.	2.9	17
21	Drift-flux model for upward two-phase cross-flow in horizontal tube bundles. International Journal of Multiphase Flow, 2017, 91, 170-183.	3.4	10
22	Flow regime transition criteria for upward two-phase cross-flow in horizontal tube bundles. Applied Thermal Engineering, 2017, 112, 1533-1546.	6.0	19
23	EBSD and TEM Analysis of the Heat Affected Zone of Laser Welded AISI 304/308 Stainless Steel. Microscopy and Microanalysis, 2017, 23, 2212-2213.	0.4	2
24	Evaluation of Human Machine Interface (HMI) in Nuclear Power Plants with Fuzzy Logic method. , 2016, , .		4
25	MELCOR simulation of core thermal response during a station blackout initiated severe accident in China pressurized reactor (CPR1000). Progress in Nuclear Energy, 2015, 81, 6-15.	2.9	28
26	Development of cladding oxidation analysis code [COAC] and application for early stage severe accident simulation of AP1000. Progress in Nuclear Energy, 2015, 85, 352-365.	2.9	6
27	The development of a zirconium oxidation calculating program module for Module In-vessel Degraded Analysis Code MIDAC. Progress in Nuclear Energy, 2014, 73, 162-171.	2.9	19