
Silvio Sosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3788841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. Journal of Ethnopharmacology, 2008, 116, 144-151.	2.0	237
2	A protein phosphatase 2A inhibition assay for a fast and sensitive assessment of okadaic acid contamination in mussels. Toxicon, 1996, 34, 743-752.	0.8	142
3	Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Scientific Reports, 2017, 7, 40572.	1.6	141
4	Characterization of Topical Antiinflammatory Compounds inRosmarinus officinalisL Journal of Agricultural and Food Chemistry, 2007, 55, 1718-1723.	2.4	136
5	The protective ability of Mediterranean dietary plants against the oxidative damage: The role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chemistry, 2009, 112, 587-594.	4.2	121
6	Highly Sensitive Electrochemiluminescent Nanobiosensor for the Detection of Palytoxin. ACS Nano, 2012, 6, 7989-7997.	7.3	96
7	Studies on the Anti-Inflammatory Activity of Phytopharmaceuticals Prepared from Arnica Flowers1. Planta Medica, 2002, 68, 385-391.	0.7	91
8	Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale, 2018, 10, 11820-11830.	2.8	90
9	Topical anti-inflammatory activity of extracts and compounds from Hypericum perforatum L. Journal of Pharmacy and Pharmacology, 2010, 59, 703-709.	1.2	86
10	Occupational exposure to graphene based nanomaterials: risk assessment. Nanoscale, 2018, 10, 15894-15903.	2.8	82
11	New Insights on Cytological and Metabolic Features of Ostreopsis cf. ovata Fukuyo (Dinophyceae): A Multidisciplinary Approach. PLoS ONE, 2013, 8, e57291.	1.1	67
12	Lignan Derivatives from <i>Krameria lappacea</i> Roots Inhibit Acute Inflammation in Vivo and Pro-inflammatory Mediators in Vitro. Journal of Natural Products, 2011, 74, 1779-1786.	1.5	56
13	Immuno-Modulatory and Anti-Inflammatory Effects of Dihydrogracilin A, a Terpene Derived from the Marine Sponge Dendrilla membranosa. International Journal of Molecular Sciences, 2017, 18, 1643.	1.8	48
14	Anti-inflammatory, antioxidant and antifungal furanosesquiterpenoids isolated from Commiphora erythraea (Ehrenb.) Engl. resin. FìtoterapA¬Ã¢, 2011, 82, 654-661.	1.1	43
15	Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale, 2020, 12, 610-622.	2.8	42
16	Evaluation of the Topical Anti-Inflammatory Activity of Ginger Dry Extracts from Solutions and Plasters. Planta Medica, 2007, 73, 1525-1530.	0.7	41
17	Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins. Fìtoterapìâ, 2010, 81, 816-819.	1.1	40
18	Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem. Marine Drugs, 2016, 14, 33.	2.2	40

SILVIO SOSA

#	Article	IF	CITATIONS
19	Improved Anti-Inflammatory Activity of Three New Terpenoids Derived, by Systematic Chemical Modifications, from the Abundant Triterpenes of the Flowery PlantCalendula officinalis. Chemistry and Biodiversity, 2005, 2, 657-671.	1.0	37
20	Topical Anti-inflammatory Activity of Flavonoids and a New Xanthone from Santolina insularis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 63-66.	0.6	37
21	Harmful Dinoflagellate <i>Ostreopsis</i> cf. <i>ovata</i> Fukuyo: Detection of Ovatoxins in Field Samples and Cell Immunolocalization Using Antipalytoxin Antibodies. Environmental Science & Technology, 2011, 45, 7051-7059.	4.6	35
22	Anti-Inflammatory Activity ofLeontopodium alpinumand its Constituents. Planta Medica, 2004, 70, 502-508.	0.7	32
23	Chemical Composition and Biological Properties of Rhododendron anthopogon Essential Oil. Molecules, 2010, 15, 2326-2338.	1.7	32
24	New Sesquiterpene Lactones from Arnica Tincture Prepared from Fresh Flowerheads ofArnica montana. Planta Medica, 2005, 71, 1044-1052.	0.7	30
25	Ovatoxin-a, A Palytoxin Analogue Isolated from <i>Ostreopsis</i> cf. <i>ovata</i> Fukuyo: Cytotoxic Activity and ELISA Detection. Environmental Science & Technology, 2016, 50, 1544-1551.	4.6	30
26	In Vitro Effects of Yessotoxin on a Primary Culture of Rat Cardiomyocytes. Toxicological Sciences, 2008, 106, 392-399.	1.4	29
27	Sanitary problems related to the presence of Ostreopsis spp. in the Mediterranean Sea: a multidisciplinary scientific approach. Annali Dell'Istituto Superiore Di Sanita, 2012, 48, 407-414.	0.2	29
28	Topical Anti-inflammatory Activity of Eupatilin, A Lipophilic Flavonoid from Mountain Wormwood (Artemisia umbelliformis Lam.). Journal of Agricultural and Food Chemistry, 2009, 57, 7726-7730.	2.4	27
29	Stereoisomers of 42-Hydroxy Palytoxin from Hawaiian <i>Palythoa toxica</i> and <i>P. tuberculosa</i> : Stereostructure Elucidation, Detection, and Biological Activities. Journal of Natural Products, 2014, 77, 351-357.	1.5	26
30	Anti-Inflammatory Activities of Hypocretenolides from Leontodon hispidus. Planta Medica, 1999, 65, 704-708.	0.7	25
31	Anti-Inflammatory Activity of Two Diterpenes of Hyptis suaveolens from El Salvador. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 165-170.	0.6	25
32	The marine toxin palytoxin induces necrotic death in HaCaT cells through a rapid mitochondrial damage. Toxicology Letters, 2014, 229, 440-450.	0.4	24
33	Oral administration of yessotoxin stabilizes E-cadherin in mouse colon. Toxicology, 2006, 227, 145-155.	2.0	23
34	Toxicity of palytoxin after repeated oral exposure in mice and inÂvitro effects on cardiomyocytes. Toxicon, 2013, 75, 3-15.	0.8	23
35	Characterization of Palytoxin Binding to HaCaT Cells Using a Monoclonal Anti-Palytoxin Antibody. Marine Drugs, 2013, 11, 584-598.	2.2	22
36	N6-isopentenyladenosine affects cytotoxic activity and cytokines production by IL-2 activated NK cells and exerts topical anti-inflammatory activity in mice. Pharmacological Research, 2014, 89, 1-10.	3.1	22

SILVIO SOSA

#	Article	IF	CITATIONS
37	Acute Oral Toxicity of Pinnatoxin G in Mice. Toxins, 2020, 12, 87.	1.5	21
38	Oxidative stress induced by palytoxin in human keratinocytes is mediated by a H+-dependent mitochondrial pathway. Toxicology and Applied Pharmacology, 2013, 266, 1-8.	1.3	20
39	Ecotoxicological impact of graphene oxide: toxic effects on the model organism <i>Artemia franciscana</i> . Environmental Science: Nano, 2020, 7, 3605-3615.	2.2	20
40	An aquarium hobbyist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon. Toxicon, 2016, 121, 41-50.	0.8	17
41	CARBON-BASED nanomaterials and SKIN: An overview. Carbon, 2022, 196, 683-698.	5.4	17
42	Diarrhoeic shellfish toxins in Adriatic Sea mussels evaluated by an ELISA method. Toxicon, 1992, 30, 673-676.	0.8	16
43	Massive Occurrence of the Harmful Benthic Dinoflagellate Ostreopsis cf. ovata in the Eastern Adriatic Sea. Toxins, 2019, 11, 300.	1.5	16
44	Keratinocytes are capable of selectively sensing low amounts of graphene-based materials: Implications for cutaneous applications. Carbon, 2020, 159, 598-610.	5.4	16
45	Topical anti-inflammatory activity of boropinic acid and its natural and semi-synthetic derivatives. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 769-772.	1.0	15
46	Topical antiinflammatory activity of an innovative aqueous formulation of actichelated® propolis vs two commercial propolis formulations. Phytotherapy Research, 2007, 21, 823-826.	2.8	14
47	In vivo and in vitro effects of 42-hydroxy-palytoxin on mouse skeletal muscle: Structural and functional impairment. Toxicology Letters, 2014, 225, 285-293.	0.4	14
48	Antiinflammatory activity of coumarins from <i>Ligusticum lucidum</i> Mill. subsp. <i>cuneifolium</i> (Guss.) Tammaro (Apiaceae). Phytotherapy Research, 2010, 24, 1697-1699.	2.8	13
49	The Stretch-Activated Channel Blocker Gd ³⁺ Reduces Palytoxin Toxicity in Primary Cultures of Skeletal Muscle Cells. Chemical Research in Toxicology, 2012, 25, 1912-1920.	1.7	13
50	Phytoplankton detection and DSP toxicity: methodological considerations. Journal of Applied Phycology, 1995, 7, 163-166.	1.5	12
51	Toxic equivalency factors (TEFs) after acute oral exposure of azaspiracid 1, â^2 and â^3 in mice. Toxicology Letters, 2018, 282, 136-146.	0.4	12
52	Steroids with anti-inflammatory activity from Vernonia nigritiana Oliv. & Hiern Phytochemistry, 2013, 96, 288-298.	1.4	11
53	A revisited hemolytic assay for palytoxin detection: Limitations for its quantitation in mussels. Toxicon, 2016, 119, 225-233.	0.8	11
54	Toxicology and diversity of marine toxins. , 2012, , 896-934.		10

SILVIO SOSA

#	Article	IF	CITATIONS
55	Synthesis and anti-inflammatory activity of 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans propenoic acid and its ester derivatives. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5709-5714.	1.0	9
56	Rimonabant reduces keratinocyte viability by induction of apoptosis and exerts topical antiâ€inflammatory activity in mice. British Journal of Pharmacology, 2011, 162, 84-93.	2.7	9
57	A Novel Sensitive Cell-Based Immunoenzymatic Assay for Palytoxin Quantitation in Mussels. Toxins, 2018, 10, 329.	1.5	8
58	Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions. Marine Drugs, 2019, 17, 276.	2.2	8
59	Partial Reversibility of the Cytotoxic Effect Induced by Graphene-Based Materials in Skin Keratinocytes. Nanomaterials, 2020, 10, 1602.	1.9	8
60	Topical Anti-Inflammatory Potential of Six Salvia Species Grown in Jordan. Jordan Journal of Pharmaceutical Sciences, 2014, 7, 153-161.	0.2	8
61	Pro-inflammatory effects of palytoxin: an in vitro study on human keratinocytes and inflammatory cells. Toxicology Research, 2016, 5, 1172-1181.	0.9	7
62	Anti-Inflammatory Sesquiterpene Lactones fromLourteigia ballotaefolia. Planta Medica, 2002, 68, 843-845.	0.7	4
63	In Vitro Cell Sensitivity to Palytoxin Correlates with High Gene Expression of the Na+/K+-ATPase β2 Subunit Isoform. International Journal of Molecular Sciences, 2020, 21, 5833.	1.8	3
64	Ecotoxicological Impact of the Marine Toxin Palytoxin on the Micro-Crustacean Artemia franciscana. Marine Drugs, 2022, 20, 81.	2.2	2
65	In Vivo Anti-inflammatory Activity of Some Naturally Occurring O- and N-Prenyl Secondary Metabolites. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	1
66	Palytoxins: Toxicological Profile. , 2015, , 1-14.		1
67	Functional and Structural Biological Methods for Palytoxin Detection. Journal of Marine Science and Engineering, 2022, 10, 916.	1.2	1
68	Palytoxins: Toxicological Profile. , 2016, , 129-145.		0