
Steffen Bollmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3788563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of quantitative susceptibility mapping using deep learning: Current status, challenges and opportunities. NMR in Biomedicine, 2022, 35, e4292.	2.8	41
2	Efficient modelling of permanent magnet field distribution for deep learning applications. Journal of Magnetism and Magnetic Materials, 2022, 559, 169521.	2.3	1
3	Deep learning–based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multiâ€echo phase training data. Magnetic Resonance in Medicine, 2022, 88, 1548-1560.	3.0	8
4	Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep learning estimation. Magnetic Resonance in Medicine, 2021, 85, 2462-2476.	3.0	10
5	Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 2021, 109, 1769-1775.	8.1	27
6	Deep learning in magnetic resonance image reconstruction. Journal of Medical Imaging and Radiation Oncology, 2021, 65, 564-577.	1.8	22
7	Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective. GigaScience, 2021, 10, .	6.4	14
8	Predicting the retinotopic organization of human visual cortex from anatomy using geometric deep learning. Neurolmage, 2021, 244, 118624.	4.2	13
9	MRI phase offset correction method impacts quantitative susceptibility mapping. Magnetic Resonance Imaging, 2020, 74, 139-151.	1.8	4
10	Functional connectivity of the irritative zone identified by electrical source imaging, and EEG-correlated fMRI analyses. NeuroImage: Clinical, 2020, 28, 102440.	2.7	6
11	Towards Optimising MRI Characterisation of Tissue (TOMCAT) Dataset including all Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) data. Data in Brief, 2020, 32, 106043.	1.0	2
12	Influence of 7T GRE-MRI Signal Compartment Model Choice on Tissue Parameters. Frontiers in Neuroscience, 2020, 14, 271.	2.8	2
13	Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI. NeuroImage, 2020, 218, 116798.	4.2	11
14	Predicting the functional organization of human visual cortex from anatomy using geometric deep learning. Journal of Vision, 2020, 20, 928.	0.3	1
15	Non-linear realignment improves hippocampus subfield segmentation reliability. NeuroImage, 2019, 203, 116206.	4.2	13
16	7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy. Magnetic Resonance Imaging, 2019, 61, 1-8.	1.8	18
17	DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping. NeuroImage, 2019, 195, 373-383.	4.2	84
18	SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network. Zeitschrift Fur Medizinische Physik, 2019, 29, 139-149.	1.5	22

STEFFEN BOLLMANN

#	Article	IF	CITATIONS
19	Real-Time Clustered Multiple Signal Classification (RTC-MUSIC). Brain Topography, 2018, 31, 125-128.	1.8	7
20	The challenge of biasâ€free coil combination for quantitative susceptibility mapping at ultraâ€high field. Magnetic Resonance in Medicine, 2018, 79, 97-107.	3.0	17
21	Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7ÂT. NeuroImage, 2018, 182, 407-416.	4.2	26
22	Age-dependent and -independent changes in attention-deficit/hyperactivity disorder (ADHD) during spatial working memory performance. World Journal of Biological Psychiatry, 2017, 18, 279-290.	2.6	14
23	Echo timeâ€dependent quantitative susceptibility mapping contains information on tissue properties. Magnetic Resonance in Medicine, 2017, 77, 1946-1958.	3.0	56
24	The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data. Journal of Neuroscience Methods, 2017, 276, 56-72.	2.5	289
25	Accelerated mapping of magnetic susceptibility using 3D planesâ€onâ€aâ€paddlewheel (POP) EPI at ultraâ€high field strength. NMR in Biomedicine, 2017, 30, e3620.	2.8	10
26	Pulsed arterial spin labelling at ultra-high field with a B 1 + -optimised adiabatic labelling pulse. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 463-473.	2.0	13
27	Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion. PLoS ONE, 2015, 10, e0135827.	2.5	23
28	Subcortical Glutamate Mediates the Reduction of Short-Range Functional Connectivity with Age in a Developmental Cohort. Journal of Neuroscience, 2015, 35, 8433-8441.	3.6	41
29	Developmental changes in gamma-aminobutyric acid levels in attention-deficit/hyperactivity disorder. Translational Psychiatry, 2015, 5, e589-e589.	4.8	66
30	Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clinical Neurophysiology, 2014, 125, 1626-1638.	1.5	86
31	Coupling Between Resting Cerebral Perfusion and EEG. Brain Topography, 2013, 26, 442-457.	1.8	52
32	A GPU-accelerated Performance Optimized RAP-MUSIC Algorithm for Real-Time Source Localization. Biomedizinische Technik, 2012, 57, .	0.8	2