
Zhengqiu Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3788426/publications.pdf Version: 2024-02-01

ΖΗΕΝΟΟΙΙΙ ΕΛΝ

#	Article	IF	CITATIONS
1	Integration of Internet search data to predict tourism trends using spatial-temporal XGBoost composite model. International Journal of Geographical Information Science, 2022, 36, 236-252.	4.8	9
2	Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment. Journal of Hazardous Materials, 2022, 423, 127116.	12.4	78
3	Do trace metal(loid)s in road soils pose health risks to tourists? A case of a highly-visited national park in China. Journal of Environmental Sciences, 2022, 111, 61-74.	6.1	21
4	Toxicity mechanism of Nylon microplastics on Microcystis aeruginosa through three pathways: Photosynthesis, oxidative stress and energy metabolism. Journal of Hazardous Materials, 2022, 426, 128094.	12.4	53
5	Seasonal Variation and Contamination Risk Assessment of Heavy Metals in Surface Sediment of an Estuary Alluvial Island in Eastern China. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 337-343.	2.7	4
6	Heavy metal(loid)s in multiple media within a mussel mariculture area of Shangchuan Island, China: Partition, transfer and health risks. Environmental Research, 2022, 211, 113100.	7.5	11
7	Joint toxicity mechanisms of binary emerging PFAS mixture on algae (Chlorella pyrenoidosa) at environmental concentration. Journal of Hazardous Materials, 2022, 437, 129355.	12.4	20
8	Risk assessment and driving factors of trace metal(loid)s in soils of China. Environmental Pollution, 2022, 309, 119772.	7.5	13
9	Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 2021, 208, 111575.	6.0	70
10	Polystyrene nanoplastics affect growth and microcystin production of Microcystis aeruginosa. Environmental Science and Pollution Research, 2021, 28, 13394-13403.	5.3	28
11	Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa. Science of the Total Environment, 2021, 765, 144431.	8.0	32
12	Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. Journal of Hazardous Materials, 2021, 415, 125629.	12.4	207
13	The influences of habitat proportion and patch-level structural factors in the spatial habitat importance ranking for connectivity and implications for habitat conservation. Urban Forestry and Urban Greening, 2021, 64, 127239.	5.3	3
14	Anti-oxidant mechanisms of Chlorella pyrenoidosa under acute GenX exposure. Science of the Total Environment, 2021, 797, 149005.	8.0	24
15	Bioaccumulation and health risk assessment of heavy metals to bivalve species in Daya Bay (South) Tj ETQq1 1 ().784314 ı 5.0	gBT_/Overlo
16	Are the Water Quality Improvement Measures of China's South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route. International Journal of Environmental Research and Public Health, 2020, 17, 6388.	2.6	7
17	Transcriptome analysis of the effect of bisphenol A exposure on the growth, photosynthetic activity and risk of microcystin-LR release by Microcystis aeruginosa. Journal of Hazardous Materials, 2020, 397, 122746.	12.4	42
18	Risk Assessment and Source Apportionment of Soil Heavy Metals under Different Land Use in a Typical Estuary Alluvial Island. International Journal of Environmental Research and Public Health, 2020, 17, 4841.	2.6	16

Zhengqiu Fan

#	Article	IF	CITATIONS
19	Heavy metals in soil of an urban industrial zone in a metropolis: risk assessment and source apportionment. Stochastic Environmental Research and Risk Assessment, 2020, 34, 435-446.	4.0	30
20	Development of a hydrophilic magnetic amino-functionalized metal-organic framework for the highly efficient enrichment of trace bisphenols in river water samples. Talanta, 2020, 211, 120713.	5.5	35
21	Modeling Daily and Monthly Water Quality Indicators in a Canal Using a Hybrid Wavelet-Based Support Vector Regression Structure. Water (Switzerland), 2020, 12, 1476.	2.7	18
22	Comprehensive risk assessment and source apportionment of heavy metal contamination in the surface sediment of the Yangtze River Anqing section, China. Environmental Earth Sciences, 2018, 77, 1.	2.7	28
23	Identifying the critical riparian buffer zone with the strongest linkage between landscape characteristics and surface water quality. Ecological Indicators, 2018, 93, 741-752.	6.3	62
24	Functional analysis of landscape connectivity at the landscape, component, and patch levels: A case study of Minqing County, Fuzhou City, China. Applied Geography, 2017, 80, 64-77.	3.7	25
25	Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905. Toxins, 2017, 9, 168.	3.4	18
26	Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L Frontiers in Plant Science, 2016, 7, 1487.	3.6	21
27	Mechanism and Reaction Pathways for Microcystin-LR Degradation through UV/H2O2 Treatment. PLoS ONE, 2016, 11, e0156236.	2.5	13
28	Photodegradation of microcystin-LR catalyzed by metal phthalocyanines immobilized on TiO2-SiO2 under visible-light irradiation. Water Science and Technology, 2015, 72, 1824-1831.	2.5	9
29	A Novel Photocatalytic Material for Removing Microcystin-LR under Visible Light Irradiation: Degradation Characteristics and Mechanisms. PLoS ONE, 2014, 9, e95798.	2.5	12
30	Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors. Frontiers of Environmental Science and Engineering, 2012, 6, 224-230.	6.0	3
31	Kinetic and mechanistic study of microcystin-LR degradation by nitrous acid under ultraviolet irradiation. Journal of Hazardous Materials, 2012, 215-216, 75-82.	12.4	8
32	Effect of pH on inactivation of <i>Microcystis aeruginosa</i> by ozonation air in sequencing batch reactor. Journal of Chemical Technology and Biotechnology, 2011, 86, 468-471.	3.2	9
33	Performance of two ornamental plants for purifying eutrophication materials in urban riverway sewages. , 2011, , .		0
34	Chemical composition of the volatile compounds of Cinnamomum septentrionale. Chemistry of Natural Compounds, 2009, 45, 272-273.	0.8	3
35	Chemical composition of volatile constituents of Magnolia grandiflora. Chemistry of Natural Compounds, 2009, 45, 257-258.	0.8	10
36	The Algicidal Characteristics of One Algae-Lysing FDT5 Bacterium onMicrocystis aeruginosa. Geomicrobiology Journal, 2009, 26, 516-521.	2.0	14

#	Article	IF	CITATIONS
37	Rapid Determination of Volatile Compounds in Toona sinensis (A. Juss.) Roem. by MAE-HS-SPME Followed by GC–MS. Chromatographia, 2007, 65, 463-467.	1.3	39
38	Photosynthetic response to nitrogen source and different ratios of nitrogen and phosphorus in toxic cyanobacteria, Microcystis aeruginosa FACHB-905. Journal of Limnology, 0, , .	1.1	6