William J Glover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3788308/publications.pdf

Version: 2024-02-01

394286 330025 1,383 39 19 37 citations g-index h-index papers 54 54 54 1235 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Does the Hydrated Electron Occupy a Cavity?. Science, 2010, 329, 65-69.	6.0	212
2	<i>Ab initio</i> multiple cloning algorithm for quantum nonadiabatic molecular dynamics. Journal of Chemical Physics, 2014, 141, 054110.	1.2	168
3	Role of Rydberg States in the Photochemical Dynamics of Ethylene. Journal of Physical Chemistry A, 2012, 116, 2808-2818.	1.1	127
4	Ultrafast internal conversion in ethylene. II. Mechanisms and pathways for quenching and hydrogen elimination. Journal of Chemical Physics, 2012, 136, 124317.	1.2	72
5	Raman spectra of ionic liquids: A simulation study of LaCl3 and its mixtures with alkali chlorides. Journal of Chemical Physics, 2004, 121, 7293-7303.	1.2	64
6	Response to Comments on "Does the Hydrated Electron Occupy a Cavity?― Science, 2011, 331, 1387-1387.	6.0	58
7	Between ethylene and polyenes - the non-adiabatic dynamics of cis-dienes. Faraday Discussions, 2012, 157, 193.	1.6	54
8	The Structure of the Hydrated Electron. Part 2. A Mixed Quantum/Classical Molecular Dynamics Embedded Cluster Density Functional Theory:  Singleâ⁻'Excitation Configuration Interaction Study. Journal of Physical Chemistry A, 2007, 111, 5232-5243.	1.1	51
9	Excited state non-adiabatic dynamics of the smallest polyene, <i>trans</i> 1,3-butadiene. II. <i>Ab initio</i> multiple spawning simulations. Journal of Chemical Physics, 2018, 148, 164303.	1.2	51
10	A computationally efficient exact pseudopotential method. I. Analytic reformulation of the Phillips-Kleinman theory. Journal of Chemical Physics, 2006, 125, 074102.	1.2	41
11	Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron. Journal of Chemical Theory and Computation, 2016, 12, 5117-5131.	2.3	35
12	Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface. Journal of Physical Chemistry Letters, 2016, 7, 3192-3198.	2.1	35
13	Excited state non-adiabatic dynamics of the smallest polyene, <i>trans</i> 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy. Journal of Chemical Physics, 2018, 148, 164302.	1.2	35
14	The roles of electronic exchange and correlation in charge-transfer-to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Journal of Chemical Physics, 2008, 129, 164505.	1.2	27
15	Comparison of S, Pt, and Hf adsorption on NiAl(110). Surface Science, 2006, 600, 2079-2090.	0.8	26
16	Fragment Quantum Mechanical Method for Excited States of Proteins: Development and Application to the Green Fluorescent Protein. Journal of Chemical Theory and Computation, 2020, 16, 5174-5188.	2.3	26
17	Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. Journal of Chemical Physics, 2017, 147, 074503.	1.2	22
18	How Does a Solvent Affect Chemical Bonds? Mixed Quantum/Classical Simulations with a Full CI Treatment of the Bonding Electrons. Journal of Physical Chemistry Letters, 2010, 1, 165-169.	2.1	21

#	Article	IF	Citations
19	Nature of Sodium Atoms/(Na ⁺ , e ^{â^'}) Contact Pairs in Liquid Tetrahydrofuran. Journal of Physical Chemistry B, 2010, 114, 11535-11543.	1.2	20
20	First principles multielectron mixed quantum/classical simulations in the condensed phase. I. An efficient Fourier-grid method for solving the many-electron problem. Journal of Chemical Physics, 2010, 132, 144101.	1.2	19
21	Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field. Journal of Chemical Physics, 2014, 141, 171102.	1.2	19
22	Prediction of Excited-State Properties of Oligoacene Crystals Using Fragment-Based Quantum Mechanical Method. Journal of Physical Chemistry A, 2019, 123, 5407-5417.	1.1	18
23	Watching the Solvation of Atoms in Liquids One Solvent Molecule at a Time. Physical Review Letters, 2010, 104, 233005.	2.9	15
24	Free Energies of Quantum Particles: The Coupled-Perturbed Quantum Umbrella Sampling Method. Journal of Chemical Theory and Computation, 2014, 10, 4661-4671.	2.3	15
25	Polarizable Embedding for Excited-State Reactions: Dynamically Weighted Polarizable QM/MM. Journal of Chemical Theory and Computation, 2018, 14, 2137-2144.	2.3	15
26	Two-Dimensional Electronic Spectroscopy Reveals the Spectral Dynamics of Förster Resonance Energy Transfer. CheM, 2019, 5, 2111-2125.	5.8	15
27	Comment on "An electron-water pseudopotential for condensed phase simulation―[J. Chem. Phys. 86, 3462 (1987)]. Journal of Chemical Physics, 2009, 131, 037101; author reply 037102.	1.2	14
28	The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies. Journal of Chemical Theory and Computation, 2020, 16, 1263-1270.	2.3	14
29	A computationally efficient exact pseudopotential method. II. Application to the molecular pseudopotential of an excess electron interacting with tetrahydrofuran (THF). Journal of Chemical Physics, 2006, 125, 074103.	1.2	13
30	SSAIMSâ€"Stochastic-Selection <i>Ab Initio</i> Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry A, 2020, 124, 6133-6143.	1.1	13
31	First principles multielectron mixed quantum/classical simulations in the condensed phase. II. The charge-transfer-to-solvent states of sodium anions in liquid tetrahydrofuran. Journal of Chemical Physics, 2010, 132, 144102.	1.2	12
32	Simulating the Formation of Sodium:Electron Tight-Contact Pairs: Watching the Solvation of Atoms in Liquids One Molecule at a Time. Journal of Physical Chemistry A, 2011, 115, 5887-5894.	1.1	11
33	Flexible boundary layer using exchange for embedding theories. II. QM/MM dynamics of the hydrated electron. Journal of Chemical Physics, 2021, 155, 224113.	1.2	11
34	Analytical gradients and derivative couplings for dynamically weighted complete active space self-consistent field. Journal of Chemical Physics, 2019, 151, 201101.	1.2	8
35	Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Molecules, 2021, 26, 4486.	1.7	8
36	Ultrafast Photoisomerization of Ethylene Studied Using Time-Resolved Extreme Ultraviolet Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2022, 126, 3873-3879.	1.1	6

#	Article	IF	CITATIONS
37	Diabatic Many-Body Expansion: Development and Application to Charge-Transfer Reactions. Journal of Chemical Theory and Computation, 2021, 17, 1497-1511.	2.3	5
38	Active orbital preservation for multiconfigurational self-consistent field. Journal of Chemical Physics, 2021, 155, 071103.	1.2	2
39	Flexible boundary layer using exchange for embedding theories. I. Theory and implementation. Journal of Chemical Physics, 2021, 155, 224112.	1.2	2