
Yang Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3788178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports, 2015, 1, 167-176.	6.6	1,060
2	Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 2010, 408, 3053-3061.	8.0	971
3	Treatment of landfill leachate by the Fenton process. Water Research, 2006, 40, 3683-3694.	11.3	541
4	Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. Journal of Hazardous Materials, 2014, 276, 452-460.	12.4	469
5	Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Research, 2012, 46, 1233-1240.	11.3	387
6	Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 2012, 195-196, 248-253.	12.7	372
7	Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Research, 2011, 45, 6189-6194.	11.3	344
8	Electrochemical oxidation for landfill leachate treatment. Waste Management, 2007, 27, 380-388.	7.4	296
9	Heat-activated persulfate oxidation of diuron in water. Chemical Engineering Journal, 2012, 203, 294-300.	12.7	261
10	Degradation of antipyrine by UV, UV/H2O2 and UV/PS. Journal of Hazardous Materials, 2013, 260, 1008-1016.	12.4	255
11	Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water. Chemical Engineering Journal, 2016, 285, 660-670.	12.7	237
12	Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. Chemical Engineering Journal, 2013, 228, 765-771.	12.7	225
13	Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Environmental Science & Technology, 2020, 54, 3752-3766.	10.0	225
14	Precursors of Dichloroacetamide, an Emerging Nitrogenous DBP Formed during Chlorination or Chloramination. Environmental Science & amp; Technology, 2010, 44, 3908-3912.	10.0	200
15	Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Science of the Total Environment, 2013, 443, 844-849.	8.0	185
16	Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate. Journal of Hazardous Materials, 2007, 146, 334-340.	12.4	174
17	Degradation of antipyrine by heat activated persulfate. Separation and Purification Technology, 2013, 109, 122-128.	7.9	146
18	Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials. Water Research, 2019, 160, 313-329.	11.3	141

#	Article	IF	CITATIONS
19	Characterization of algal organic matters of Microcystis aeruginosa: Biodegradability, DBP formation and membrane fouling potential. Water Research, 2014, 52, 199-207.	11.3	138
20	Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa. Science of the Total Environment, 2013, 463-464, 111-119.	8.0	128
21	Ozone–biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products. Chemosphere, 2012, 86, 1087-1091.	8.2	122
22	Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation. Water Research, 2017, 108, 260-270.	11.3	113
23	Re-evaluation of sulfate radical based–advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate. Water Research, 2019, 153, 100-107.	11.3	108
24	Degradation of pCNB by Fenton like process using α-FeOOH. Chemical Engineering Journal, 2015, 260, 28-36.	12.7	103
25	Oxidation of Aqueous EDTA and Associated Organics and Coprecipitation of Inorganics by Ambient Iron-Mediated Aeration. Environmental Science & Technology, 2007, 41, 270-276.	10.0	101
26	Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Science of the Total Environment, 2020, 745, 140768.	8.0	99
27	Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chemical Engineering Journal, 2012, 193-194, 339-347.	12.7	96
28	Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. Journal of Hazardous Materials, 2012, 231-232, 43-48.	12.4	95
29	Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water. International Journal of Environmental Science and Technology, 2014, 11, 881-890.	3.5	84
30	Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products. Bioresource Technology, 2011, 102, 11161-11166.	9.6	77
31	Intensified Disinfection Amid COVID-19 Pandemic Poses Potential Risks to Water Quality and Safety. Environmental Science & Technology, 2021, 55, 4084-4086.	10.0	75
32	Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa. Water Research, 2012, 46, 1241-1250.	11.3	74
33	Impacts of pre-oxidation on the formation of disinfection byproducts from algal organic matter in subsequent chlor(am)ination: A review. Science of the Total Environment, 2021, 754, 141955.	8.0	73
34	Factors affecting sonolytic degradation of sulfamethazine in water. Ultrasonics Sonochemistry, 2013, 20, 1401-1407.	8.2	72
35	Ametryn degradation in the ultraviolet (UV) irradiation/hydrogen peroxide (H2O2) treatment. Journal of Hazardous Materials, 2009, 164, 640-645.	12.4	68
36	Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid. Journal of Hazardous Materials, 2010, 173, 82-86.	12.4	65

#	Article	IF	CITATIONS
37	Copper in LaMnO3 to promote peroxymonosulfate activation by regulating the reactive oxygen species in sulfamethoxazole degradation. Journal of Hazardous Materials, 2021, 411, 125163.	12.4	65
38	Mechanistic studies of Microcystic aeruginosa inactivation and degradation by UV-C irradiation and chlorination with poly-synchronous analyses. Desalination, 2011, 272, 107-119.	8.2	63
39	Adsorption of UV-quenching substances (UVQS) from landfill leachate with activated carbon. Chemical Engineering Journal, 2018, 350, 739-746.	12.7	63
40	Leaching of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge-derived biochar. Chemical Engineering Journal, 2019, 373, 840-845.	12.7	62
41	Correlations between microbial indicators, pathogens, and environmental factors in a subtropical Estuary. Marine Pollution Bulletin, 2009, 58, 1374-1381.	5.0	60
42	Degradation of bisphenol A by UV/persulfate process in the presence of bromide: Role of reactive bromine. Water Research, 2022, 215, 118288.	11.3	60
43	Mitigation and degradation of natural organic matters (NOMs) during ferrate(VI) application for drinking water treatment. Chemosphere, 2016, 146, 145-153.	8.2	59
44	Solar power-driven humidification–dehumidification (HDH) process for desalination of brackish water. Desalination, 2012, 305, 17-23.	8.2	58
45	Formation of chloroform during chlorination of alanine in drinking water. Chemosphere, 2009, 77, 1346-1351.	8.2	57
46	Production of trihalomethanes, haloacetaldehydes and haloacetonitriles during chlorination of microcystin-LR and impacts of pre-oxidation on their formation. Journal of Hazardous Materials, 2017, 327, 153-160.	12.4	57
47	Advanced Oxidation Processes (AOPs) for reduction of organic pollutants in landfill leachate: a review. International Journal of Environment and Waste Management, 2009, 4, 366.	0.3	53
48	Degradation of bisphenol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide. Journal of Environmental Sciences, 2011, 23, 31-36.	6.1	51
49	Degradation of florfenicol in water by UV/Na2S2O8 process. Environmental Science and Pollution Research, 2015, 22, 8693-8701.	5.3	49
50	Ferrate(VI) decomposition in water in the absence and presence of natural organic matter (NOM). Chemical Engineering Journal, 2018, 334, 2335-2342.	12.7	49
51	Inactivation and degradation of Microcystis aeruginosa by UV-C irradiation. Chemosphere, 2011, 85, 1192-1198.	8.2	48
52	Immediate and long-term impacts of potassium permanganate on photosynthetic activity, survival and microcystin-LR release risk of Microcystis aeruginosa. Journal of Hazardous Materials, 2012, 219-220, 267-275.	12.4	48
53	Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff. Chemosphere, 2016, 154, 289-292.	8.2	48
54	Formation of nitrogenous disinfection by-products from pre-chloramination. Chemosphere, 2011, 85, 1187-1191.	8.2	47

#	Article	IF	CITATIONS
55	Nanoscale iron hydroxide-doped granular activated carbon (Fe-GAC) as a sorbent for perchlorate in water. Chemical Engineering Journal, 2013, 222, 520-526.	12.7	45
56	Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment. Water Research, 2016, 93, 172-178.	11.3	45
57	Three Kinetic Patterns for the Oxidation of Emerging Organic Contaminants by Fe(VI): The Critical Roles of Fe(V) and Fe(IV). Environmental Science & Technology, 2021, 55, 11338-11347.	10.0	45
58	One-step Ferrate(VI) treatment as a core process for alternative drinking water treatment. Chemosphere, 2020, 242, 125134.	8.2	44
59	Research on the treatment of biologically treated landfill leachate by joint electrochemical system. Waste Management, 2018, 82, 177-187.	7.4	43
60	Effects of UV/PS and UV/H 2 O 2 pre-oxidations on the formation of trihalomethanes and haloacetonitriles during chlorination and chloramination of free amino acids and short oligopeptides. Chemical Engineering Journal, 2016, 301, 65-72.	12.7	41
61	Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water. Journal of Environmental Sciences, 2008, 20, 246-251.	6.1	39
62	Perchlorate removal using granular activated carbon supported iron compounds: Synthesis, characterization and reactivity. Journal of Environmental Sciences, 2010, 22, 1807-1813.	6.1	38
63	Heat-activated persulfate oxidation of sulfamethoxazole in water. Desalination and Water Treatment, 2015, 56, 2225-2233.	1.0	38
64	Coagulation of colloidal particles with ferrate(<scp>vi</scp>). Environmental Science: Water Research and Technology, 2018, 4, 701-710.	2.4	38
65	The occurrence and control of waterborne viruses in drinking water treatment: A review. Chemosphere, 2021, 281, 130728.	8.2	36
66	Perchlorate removal by granular activated carbon coated with cetyltrimethyl ammonium bromide. Journal of Colloid and Interface Science, 2011, 357, 474-479.	9.4	35
67	Formation of bromate during ferrate(VI) oxidation of bromide in water. Chemosphere, 2016, 155, 528-533.	8.2	35
68	Low-cost adsorbents for urban stormwater pollution control. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	34
69	Granular activated carbon (GAC) adsorption of two algal odorants, dimethyl trisulfide and β-cyclocitral. Desalination, 2011, 266, 231-237.	8.2	33
70	Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption – regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA). Chemical Engineering Journal, 2021, 405, 126698.	12.7	33
71	Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment. Chemosphere, 2017, 186, 757-761.	8.2	32
72	Perchlorate removal by granular activated carbon coated with cetyltrimethyl ammonium chloride. Desalination, 2011, 275, 87-92.	8.2	31

#	Article	IF	CITATIONS
73	Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments. Ecotoxicology and Environmental Safety, 2016, 124, 147-154.	6.0	31
74	The contribution of atmospheric particulate matter to the formation of CX3R-type disinfection by-products in rainwater during chlorination. Water Research, 2018, 145, 531-540.	11.3	31
75	Influencing factors and kinetic studies of imidacloprid degradation by ozonation. Environmental Technology (United Kingdom), 2019, 40, 2127-2134.	2.2	29
76	Arsenic removal in synthetic ground water using iron electrolysis. Separation and Purification Technology, 2014, 122, 225-230.	7.9	28
77	Water Treatment Residuals and Scrap Tire Rubber as Green Sorbents for Removal of Stormwater Metals. Water Environment Research, 2016, 88, 500-509.	2.7	28
78	Emergency water treatment with ferrate(<scp>vi</scp>) in response to natural disasters. Environmental Science: Water Research and Technology, 2018, 4, 359-368.	2.4	28
79	Coagulation of Iodide-Containing Resorcinol Solution or Natural Waters with Ferric Chloride Can Produce Iodinated Coagulation Byproducts. Environmental Science & Technology, 2019, 53, 12407-12415.	10.0	28
80	Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate. Journal of Hazardous Materials, 2008, 153, 293-299.	12.4	27
81	Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides. Scientific Reports, 2015, 5, 14412.	3.3	25
82	Emergency water treatment with combined ferrate(<scp>vi</scp>) and ferric salts for disasters and disease outbreaks. Environmental Science: Water Research and Technology, 2020, 6, 2816-2831.	2.4	24
83	Kinetic oxidation of antipyrine in heat-activated persulfate. Desalination and Water Treatment, 2015, 53, 263-271.	1.0	23
84	Aluminum-Impregnated Biochar for Adsorption of Arsenic(V) in Urban Stormwater Runoff. Journal of Environmental Engineering, ASCE, 2019, 145, .	1.4	23
85	Is Sulfate Radical a ROS?. Environmental Science & Technology, 2021, 55, 15010-15012.	10.0	23
86	Sonolytic degradation of parathion and the formation of byproducts. Ultrasonics Sonochemistry, 2010, 17, 802-809.	8.2	22
87	Effects of inorganic anions on Fenton oxidation of organic species in landfill leachate. Waste Management and Research, 2012, 30, 12-19.	3.9	22
88	Nitrite formation during low pressure ultraviolet lamp irradiation of nitrate. Water Science and Technology, 2009, 60, 1393-1400.	2.5	21
89	Adsorption of perchlorate from water using calcined iron-based layered double hydroxides. Applied Clay Science, 2012, 65-66, 80-86.	5.2	21
90	Net-zero water management: achieving energy-positive municipal water supply. Environmental Science: Water Research and Technology, 2016, 2, 250-260.	2.4	21

#	Article	IF	CITATIONS
91	ldentification and manipulation of active centers on perovskites to enhance catalysis of peroxymonosulfate for degradation of emerging pollutants in water. Journal of Hazardous Materials, 2022, 424, 127384.	12.4	21
92	Spatio-temporal variability of halogenated disinfection by-products in a large-scale two-source water distribution system with enhanced chlorination. Journal of Hazardous Materials, 2022, 423, 127113.	12.4	21
93	Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water. Journal of Zhejiang University: Science A, 2009, 10, 1660-1669.	2.4	20
94	Adsorption of Microcystinâ€LR from Water with Iron Oxide Nanoparticles. Water Environment Research, 2012, 84, 562-568.	2.7	19
95	Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by aluminum-based drinking water treatment residuals. Journal of Hazardous Materials Letters, 2021, 2, 100034.	3.6	19
96	Aqueous chlorination of algal odorants: Reaction kinetics and formation of disinfection by-products. Separation and Purification Technology, 2012, 92, 93-99.	7.9	18
97	Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water. International Journal of Environmental Research and Public Health, 2015, 12, 6700-6709.	2.6	17
98	Enhancing oxidative capability of Ferrate(VI) for oxidative destruction of phenol in water through intercalation of Ferrate(VI) into layered double hydroxide. Applied Clay Science, 2019, 171, 48-56.	5.2	17
99	Generality and diversity on the kinetics, toxicity and DFT studies of sulfate radical-induced transformation of BPA and its analogues. Water Research, 2022, 219, 118506.	11.3	17
100	Occurrence of algae and algae-related taste and odour (T&O) compounds in the Qingcaosha Reservoir, China. Journal of Water Supply: Research and Technology - AQUA, 2015, 64, 824-831.	1.4	16
101	The Effect of Regeneration Techniques on Periapical Surgery With Different Protocols for Different Lesion Types: A Meta-Analysis. Journal of Oral and Maxillofacial Surgery, 2016, 74, 239-246.	1.2	16
102	Risk assessment and interpretation of heavy metal contaminated soils on an urban brownfield site in New York metropolitan area. Environmental Science and Pollution Research, 2017, 24, 23549-23558.	5.3	16
103	Reinvestigation of the oxidation of organic contaminants by Fe(VI): Kinetics and effects of water matrix constituents. Journal of Hazardous Materials, 2022, 430, 128421.	12.4	15
104	Kinetics and oxidative mechanism for H2O2-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate. Journal of Hazardous Materials, 2009, 169, 370-375.	12.4	14
105	Factors Controlling Surface Water Flow in a Low-gradient Subtropical Wetland. Wetlands, 2010, 30, 275-286.	1.5	13
106	Ambient iron-mediated aeration (IMA) for water reuse. Water Research, 2013, 47, 850-858.	11.3	13
107	Assessment of Soil and Water Contamination at the Tab-Simco Coal Mine: A Case Study. Mine Water and the Environment, 2017, 36, 248-254.	2.0	13
108	Making Waves: Principles for the Design of Sustainable Household Water Treatment. Water Research, 2021, 198, 117151.	11.3	13

#	Article	IF	CITATIONS
109	Principal component analysis to assess the composition and fate of impurities in a large river-embedded reservoir: Qingcaosha Reservoir. Environmental Sciences: Processes and Impacts, 2013, 15, 1613.	3.5	12
110	Principal component analysis to assess the efficiency and mechanism for enhanced coagulation of natural algae-laden water using a novel dual coagulant system. Environmental Science and Pollution Research, 2014, 21, 2122-2131.	5.3	12
111	Characterization of ultraviolet-quenching dissolved organic matter (DOM) in mature and young leachates before and after biological pre-treatment. Environmental Science: Water Research and Technology, 2018, 4, 731-738.	2.4	12
112	Mechanisms and performance of calcium peroxide-enhanced Fe(<scp>ii</scp>) coagulation for treatment of <i>Microcystis aeruginosa</i> -laden water. Environmental Science: Water Research and Technology, 2020, 6, 1272-1285.	2.4	12
113	Chemically enhanced primary treatment of municipal wastewater with ferrate(VI). Water Environment Research, 2021, 93, 817-825.	2.7	12
114	Effects of ciprofloxacin on Eichhornia crassipes phytoremediation performance and physiology under hydroponic conditions. Environmental Science and Pollution Research, 2022, 29, 47363-47372.	5.3	12
115	Impacts of hurricanes on surface water flow within a wetland. Journal of Hydrology, 2010, 392, 164-173.	5.4	10
116	Water treatment residual oated wood mulch for addressing urban stormwater pollution. Water Environment Research, 2019, 91, 523-535.	2.7	10
117	Wood mulch coated with iron-based water treatment residuals for the abatement of metals and phosphorus in simulated stormwater runoff. Environmental Technology and Innovation, 2021, 21, 101214.	6.1	10
118	Performance and mechanism of a novel woodchip embedded biofilm electrochemical reactor (WBER) for nitrate-contaminated wastewater treatment. Chemosphere, 2021, 276, 130250.	8.2	10
119	Household cooking with seaweed salts and chloraminated tap water produce harmful iodinated disinfection by-products. Chemical Engineering Journal, 2022, 431, 133471.	12.7	10
120	Evaluation of DNA extraction methods for the analysis of microbial community in biological activated carbon. Environmental Technology (United Kingdom), 2012, 33, 437-444.	2.2	9
121	Desorption of bisphenol-A (BPA) and regeneration of BPA-spent granular activated carbon using ultrasonic irradiation and organic solvent extraction. Desalination and Water Treatment, 2015, 54, 3106-3113.	1.0	9
122	Development of a novel palm fiber biofilm electrode reactor (PBER) for nitrate-contaminated wastewater treatment: performance and mechanism. Environmental Science: Water Research and Technology, 2020, 6, 839-850.	2.4	9
123	Factors Affecting UV/H ₂ O ₂ Oxidation of 17αâ€Ethynyestradiol in Water. Clean - Soil, Air, Water, 2013, 41, 143-147.	1.1	8
124	Integrated Principal Component Analysis of <i>Microcystis aeruginosa</i> Dissolved Organic Matter and Assessment of UVâ€C Preâ€Treatment on Cyanobacteriaâ€Containing Water. Clean - Soil, Air, Water, 2014, 42, 442-448.	1.1	8
125	Pollution in rainwater harvesting: A challenge for sustainability and resilience of urban agriculture. Journal of Hazardous Materials Letters, 2021, 2, 100037.	3.6	8
126	A predictive model for the formation potential of dichloroacetamide, a nitrogenous disinfection by-product formed during chlorination. International Journal of Environmental Science and Technology, 2012, 9, 701-704.	3.5	7

#	Article	IF	CITATIONS
127	Adsorption of Two Taste and Odor Compounds IPMP and IBMP by Granular Activated Carbon in Water. Clean - Soil, Air, Water, 2012, 40, 1349-1356.	1.1	7
128	Performance of a New Magnetic Chitosan Nanoparticle to Remove Arsenic and Its Separation from Water. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	6
129	Characterization of Dissolved Organic Matter in Mature Leachate during Ammonia Stripping and Two-Stage Aged-Refuse Bioreactor Treatment. Journal of Environmental Engineering, ASCE, 2018, 144, .	1.4	6
130	Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals. Journal of Fungi (Basel, Switzerland), 2020, 6, 270.	3.5	6
131	Removal of meropenem from environmental matrices by electrochemical oxidation using Co/Bi/TiO ₂ nanotube electrodes. Environmental Science: Water Research and Technology, 2020, 6, 2197-2208.	2.4	6
132	Occurrence of Emerging Contaminant Acesulfame in Water Treatment System and Its Degradation during Ozone Oxidation. Ozone: Science and Engineering, 2021, 43, 185-194.	2.5	6
133	Removal of Perchlorate in Water by Calcined MgAl-CO ₃ Layered Double Hydroxides. Water Environment Research, 2013, 85, 331-339.	2.7	4
134	Quantitative analysis of trace levels of β-ionone in water by liquid-liquid-phase extraction-gas chromatography-mass spectrometry (LLE-GC-MS). Journal of Central South University, 2015, 22, 472-477.	3.0	4
135	Effect of the mixing ratio during co-treatment of landfill leachate and sewage with a combined stripping and reversed A ² /O process. Environmental Technology (United Kingdom), 2015, 36, 2668-2673.	2.2	4
136	Ferrate(VI) Reaction with Effluent Organic Matter (EfOM) in Secondary Effluent for Water Reuse. ACS Symposium Series, 2016, , 411-420.	0.5	4
137	Novel photocatalytic reactor for degradation of DDT in water and its optimization model. Journal of Zhejiang University: Science A, 2009, 10, 732-738.	2.4	3
138	PV cell-driven humidification-dehumidification (H/D) process for brine treatment. Desalination and Water Treatment, 2011, 28, 328-337.	1.0	3
139	Control of Halogenated N-DBP Precursors Using Traditional and Advanced Drinking Water Treatment Processes: A Pilot-Scale Study in China's Lake Taihu. ACS Symposium Series, 2015, , 307-339.	0.5	3
140	M-PGMA as a new water treatment agent to remove oxytetracycline from water. Water Science and Technology: Water Supply, 2016, 16, 295-304.	2.1	3
141	Current and future trends in adsorption for environmental separations. Journal of Hazardous Materials, 2022, 433, 128776.	12.4	3
142	Advanced Reduction Processes for Degradation of Refractory Organics in Landfill Leachate. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	3
143	Principal component analysis to assess the efficiency and mechanism for ultraviolet-C/polyaluminum chloride enhanced coagulation of algae-laden water. Water Science and Technology: Water Supply, 2014, 14, 493-503.	2.1	2
144	Microcystin-RR degradation by ozonation. Desalination and Water Treatment, 2015, 55, 1060-1067.	1.0	2

#	Article	IF	CITATIONS
145	Virus Monitoring and Removal in Natural and Built Systems. Journal of Environmental Engineering, ASCE, 2020, 146, .	1.4	1
146	Building disaster resilience of water supply with household water treatment. Water Environment Research, 2021, 93, 1154-1156.	2.7	1
147	Engineering in Environmental Management. , 0, , 151-172.		1
148	Editorial: Surmounting challenges in natural and engineered water systems. Water Environment Research, 2020, 92, 1102-1103.	2.7	0