Lara Kular

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3787847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA methylation changes in glial cells of the normal-appearing white matter in Multiple Sclerosis patients. Epigenetics, 2022, 17, 1311-1330.	1.3	10
2	Methylome and transcriptome signature of bronchoalveolar cells from multiple sclerosis patients in relation to smoking. Multiple Sclerosis Journal, 2021, 27, 1014-1026.	1.4	12
3	Longitudinal DNA methylation changes at MET may alter HGF/c-MET signalling in adolescents at risk for depression. Epigenetics, 2020, 15, 646-663.	1.3	12
4	meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes. Clinical Epigenetics, 2020, 12, 99.	1.8	19
5	Epigenetic insights into multiple sclerosis disease progression. Journal of Internal Medicine, 2020, 288, 82-102.	2.7	21
6	C-type lectin receptors Mcl and Mincle control development of multiple sclerosis–like neuroinflammation. Journal of Clinical Investigation, 2020, 130, 838-852.	3.9	27
7	L'épigénétique comme partenaire de la psychiatrieÂ: vers une approche personnalisée du patient. Evolution Psychiatrique, 2019, 84, 207-221.	0.1	5
8	Tobacco smoking induces changes in true DNA methylation, hydroxymethylation and gene expression in bronchoalveolar lavage cells. EBioMedicine, 2019, 46, 290-304.	2.7	48
9	Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis. Clinical Epigenetics, 2019, 11, 86.	1.8	24
10	Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: A comprehensive overview. Journal of Autoimmunity, 2019, 101, 17-25.	3.0	58
11	Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression. EBioMedicine, 2019, 43, 411-423.	2.7	45
12	Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9443-9452.	3.3	48
13	Genome-Wide Screen for MicroRNAs Reveals a Role for miR-203 in Melanoma Metastasis. Journal of Investigative Dermatology, 2018, 138, 882-892.	0.3	34
14	Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-β signaling. Nature Immunology, 2018, 19, 1-7.	7.0	62
15	Epigenetics applied to psychiatry: Clinical opportunities and future challenges. Psychiatry and Clinical Neurosciences, 2018, 72, 195-211.	1.0	54
16	Changes in methylation within the STK32B promoter are associated with an increased risk for generalized anxiety disorder in adolescents. Journal of Psychiatric Research, 2018, 102, 44-51.	1.5	16
17	Hypermethylation of <i>MIR21</i> in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes. Multiple Sclerosis Journal, 2018, 24, 1288-1300.	1.4	33
18	Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nature Communications, 2018, 9, 4845.	5.8	148

Lara Kular

#	Article	IF	CITATIONS
19	DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nature Communications, 2018, 9, 2397.	5.8	147
20	Decreased Expression of <i><scp>IFNG</scp>â€<scp>AS</scp>1</i> , <i><scp>IFNG</scp></i> and <i><scp>IL</scp>â€1B</i> Inflammatory Genes in Medicated Schizophrenia and Bipolar Patients. Scandinavian Journal of Immunology, 2017, 86, 479-485.	1.3	18
21	Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiological Genomics, 2017, 49, 447-461.	1.0	30
22	Smoking induces DNA methylation changes in Multiple Sclerosis patients with exposure-response relationship. Scientific Reports, 2017, 7, 14589.	1.6	55
23	Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies. BMC Bioinformatics, 2017, 18, 486.	1.2	25
24	Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle?. International Journal of Biochemistry and Cell Biology, 2015, 67, 49-57.	1.2	21