
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3787244/publications.pdf Version: 2024-02-01

ALEXANDRA C NEWTON

#	Article	IF	CITATIONS
1	mTOR Regulation of AGC Kinases: New Twist to an Old Tail. Molecular Pharmacology, 2022, 101, 213-218.	2.3	13
2	Protein kinase C: release from quarantine by mTORC2. Trends in Biochemical Sciences, 2022, 47, 518-530.	7.5	11
3	PHLPPing the Script: Emerging Roles of PHLPP Phosphatases in Cell Signaling. Annual Review of Pharmacology and Toxicology, 2021, 61, 723-743.	9.4	16
4	How does <scp>the International Union of Biochemistry and Molecular Biology</scp> support education and training?. Biochemistry and Molecular Biology Education, 2021, 49, 7-8.	1.2	0
5	Protein Kinase C. , 2021, , 1-4.		0
6	PHLPPing the balance: restoration of protein kinase C in cancer. Biochemical Journal, 2021, 478, 341-355.	3.7	19
7	Kinases/Phosphatases Protein Kinase C Family. , 2021, , 373-376.		0
8	The PHLPP1 N-Terminal Extension Is a Mitotic Cdk1 Substrate and Controls an Interactome Switch. Molecular and Cellular Biology, 2021, 41, .	2.3	4
9	PKCα Is Recruited toÂStaphylococcus aureus-Containing Phagosomes and Impairs Bacterial Replication by Inhibition of Autophagy. Frontiers in Immunology, 2021, 12, 662987.	4.8	5
10	mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Science Signaling, 2021, 14, .	3.6	64
11	Conventional protein kinase C in the brain: repurposing cancer drugs for neurodegenerative treatment?. Neuronal Signaling, 2021, 5, NS20210036.	3.2	13
12	Protein kinase C fusion proteins are paradoxically loss of function in cancer. Journal of Biological Chemistry, 2021, 296, 100445.	3.4	20
13	Protein Kinase C. , 2021, , 1293-1295.		0
14	Hypothesis: Unifying model of domain architecture for conventional and novel protein kinase C isozymes. IUBMB Life, 2020, 72, 2584-2590.	3.4	9
15	Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nature Communications, 2020, 11, 6088.	12.8	23
16	Pharmacology on Target. Trends in Pharmacological Sciences, 2020, 41, 227-230.	8.7	2
17	The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. Journal of Cell Biology, 2019, 218, 1943-1957.	5.2	33
18	Protein kinases in tune. IUBMB Life, 2019, 71, 670-671.	3.4	0

#	Article	IF	CITATIONS
19	Protein Kinase C Quality Control by Phosphatase PHLPP1ÂUnveils Loss-of-Function Mechanism in Cancer. Molecular Cell, 2019, 74, 378-392.e5.	9.7	41
20	Apical–basal polarity inhibits epithelial–mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nature Cell Biology, 2019, 21, 359-371.	10.3	97
21	Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter. Science Signaling, 2019, 12, .	3.6	41
22	PHLPP1 counter-regulates STAT1-mediated inflammatory signaling. ELife, 2019, 8, .	6.0	22
23	Fusion Gene TANC2â€PRKCA Reveals Another Mechanism for Loss of Protein Kinase C Function in Cancer. FASEB Journal, 2019, 33, 815.14.	0.5	Ο
24	Protein kinase C: perfectly balanced. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 208-230.	5.2	207
25	Protein kinase C as a tumor suppressor. Seminars in Cancer Biology, 2018, 48, 18-26.	9.6	82
26	Protein kinase Cα gain-of-function variant in Alzheimer's disease displays enhanced catalysis by a mechanism that evades down-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5497-E5505.	7.1	34
27	Genetic code expansion and live cell imaging reveal that Thr-308 phosphorylation is irreplaceable and sufficient for Akt1 activity. Journal of Biological Chemistry, 2018, 293, 10744-10756.	3.4	31
28	Integrative annotation and knowledge discovery of kinase post-translational modifications and cancer-associated mutations through federated protein ontologies and resources. Scientific Reports, 2018, 8, 6518.	3.3	31
29	Protein Kinase C (Prkc). , 2018, , 4216-4222.		0
30	PH Domain Leucine-Rich Repeat Protein Phosphatase (PHLPP). , 2018, , 3918-3924.		0
31	The Protein Phosphatase PHLPP1 Suppresses Insulin Signaling and Inflammation in Mouse Model. FASEB Journal, 2018, 32, 670.55.	0.5	0
32	The tumor suppressor phosphatase PHLPP1 suppresses inflammatory signaling by regulating the phosphorylation state and activity of STAT1. FASEB Journal, 2018, 32, 648.11.	0.5	0
33	CDK1â€dependent Phosphorylation of the Tumor Suppressor Phosphatase, PHLPP1, Regulates the Mitotic PHLPP1 Interactome. FASEB Journal, 2018, 32, 687.2.	0.5	0
34	Cancerâ€Associated Fusions of the Protein Kinase C Kinase Domain are Lossâ€ofâ€Function. FASEB Journal, 2018, 32, 687.6.	0.5	0
35	A Subtle Amino Acid Change Impacts Kinase Function in Dramatically Distinct Ways. FASEB Journal, 2018, 32, 662.3.	0.5	0
36	Atypical Protein Kinase Câ€specific Activity Reporter Reveals Novel Activation Mechanism of Atypical Protein Kinase C by Sphingosine 1â€phosphate. FASEB Journal, 2018, 32, 662.1.	0.5	0

#	Article	IF	CITATIONS
37	Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends in Pharmacological Sciences, 2017, 38, 438-447.	8.7	81
38	Conventional protein kinase C in the brain: 40 years later. Neuronal Signaling, 2017, 1, NS20160005.	3.2	59
39	Protein Scaffolds Control Localized Protein Kinase Cζ Activity. Journal of Biological Chemistry, 2016, 291, 13809-13822.	3.4	34
40	PHLPPing through history: a decade in the life of PHLPP phosphatases. Biochemical Society Transactions, 2016, 44, 1675-1682.	3.4	73
41	Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation. Biochemical Journal, 2016, 473, 509-523.	3.7	42
42	Second Messengers. Cold Spring Harbor Perspectives in Biology, 2016, 8, a005926.	5.5	138
43	Protein kinase C mechanisms that contribute to cardiac remodelling. Clinical Science, 2016, 130, 1499-1510.	4.3	43
44	KinView: a visual comparative sequence analysis tool for integrated kinome research. Molecular BioSystems, 2016, 12, 3651-3665.	2.9	47
45	Gain-of-function mutations in protein kinase Cα (PKCα) may promote synaptic defects in Alzheimer's disease. Science Signaling, 2016, 9, ra47.	3.6	84
46	Bacterial spore coat protein kinases: A new twist to an old story. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6811-6812.	7.1	4
47	Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity. Journal of Biological Chemistry, 2016, 291, 13964-13973.	3.4	50
48	Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival. Oncotarget, 2016, 7, 20919-20933.	1.8	36
49	PH Domain Leucine-Rich Repeat Protein Phosphatase (PHLPP). , 2016, , 1-7.		0
50	Protein Kinase C (Prkc). , 2016, , 1-6.		0
51	<i>Science Signaling</i> Podcast for 10 May 2016: PKCα in Alzheimer's disease. Science Signaling, 2016, 9, pc11.	3.6	0
52	Intramolecular C2 Domain-Mediated Autoinhibition of Protein Kinase C βII. Cell Reports, 2015, 12, 1252-1260.	6.4	47
53	Protein Kinase D Inhibitors Uncouple Phosphorylation from Activity by Promoting Agonist-Dependent Activation Loop Phosphorylation. Chemistry and Biology, 2015, 22, 98-106.	6.0	15
54	Cancer-Associated Protein Kinase C Mutations Reveal Kinase's Role as Tumor Suppressor. Cell, 2015, 160, 489-502.	28.9	285

#	Article	IF	CITATIONS
55	Deletion of the PH-domain and Leucine-rich Repeat Protein Phosphatase 1 (Phlpp1) Increases Fibroblast Growth Factor (Fgf) 18 Expression and Promotes Chondrocyte Proliferation. Journal of Biological Chemistry, 2015, 290, 16272-16280.	3.4	49
56	Zeta Inhibitory Peptide Disrupts Electrostatic Interactions That Maintain Atypical Protein Kinase C in Its Active Conformation on the Scaffold p62. Journal of Biological Chemistry, 2015, 290, 21845-21856.	3.4	33
57	Tuning the signalling output of protein kinase C. Biochemical Society Transactions, 2014, 42, 1477-1483.	3.4	51
58	Both Decreased and Increased SRPK1 Levels Promote Cancer by Interfering with PHLPP-Mediated Dephosphorylation of Akt. Molecular Cell, 2014, 54, 378-391.	9.7	105
59	Turning Off AKT: PHLPP as a Drug Target. Annual Review of Pharmacology and Toxicology, 2014, 54, 537-558.	9.4	113
60	Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3957-65.	7.1	33
61	Protein Kinase Cδ-mediated Phosphorylation of Connexin43 Gap Junction Channels Causes Movement within Gap Junctions followed by Vesicle Internalization and Protein Degradation. Journal of Biological Chemistry, 2014, 289, 8781-8798.	3.4	40
62	Intramolecular Conformational Changes Optimize Protein Kinase C Signaling. Chemistry and Biology, 2014, 21, 459-469.	6.0	54
63	Biochemical Characterization of the Phosphatase Domain of the Tumor Suppressor PH Domain Leucine-Rich Repeat Protein Phosphatase. Biochemistry, 2014, 53, 3971-3981.	2.5	30
64	Suppression of survival signalling pathways by the phosphatase PHLPP. FEBS Journal, 2013, 280, 572-583.	4.7	98
65	Spatiotemporal Dynamics of Phosphorylation in Lipid Second Messenger Signaling. Molecular and Cellular Proteomics, 2013, 12, 3498-3508.	3.8	38
66	Protein kinase C pharmacology: refining the toolbox. Biochemical Journal, 2013, 452, 195-209.	3.7	172
67	Electrostatic and Hydrophobic Interactions Differentially Tune Membrane Binding Kinetics of the C2 Domain of Protein Kinase Cα. Journal of Biological Chemistry, 2013, 288, 16905-16915.	3.4	23
68	Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase (PHLPP): A New Player in Cell Signaling. Journal of Biological Chemistry, 2012, 287, 3610-3616.	3.4	62
69	lsozyme-specific Interaction of Protein Kinase Cδ with Mitochondria Dissected Using Live Cell Fluorescence Imaging. Journal of Biological Chemistry, 2012, 287, 37891-37906.	3.4	22
70	Peptidyl-prolyl Isomerase Pin1 Controls Down-regulation of Conventional Protein Kinase C Isozymes. Journal of Biological Chemistry, 2012, 287, 13262-13278.	3.4	40
71	Shedding light on local kinase activation. BMC Biology, 2012, 10, 61.	3.8	10
72	Cellular Pharmacology of Protein Kinase Mζ (PKMζ) Contrasts with Its in Vitro Profile. Journal of Biological Chemistry, 2012, 287, 12879-12885.	3.4	52

#	Article	IF	CITATIONS
73	Imaging Oscillations of Protein Kinase C Activity in Cells. Neuromethods, 2012, , 251-257.	0.3	Ο
74	Discrepancies in purified and cellular PKMζ inhibition profiles invalidate its proposed role as a mediator of memory. FASEB Journal, 2012, 26, 768.5.	0.5	0
75	Maturation of protein kinase C masks its C1 domains. FASEB Journal, 2012, 26, 839.5.	0.5	0
76	lsozymeâ€specific interaction of protein kinase C δ with mitochondria dissected using live cell fluorescence imaging. FASEB Journal, 2012, 26, .	0.5	0
77	Identification of PHLPP1 as a Tumor Suppressor Reveals the Role of Feedback Activation in PTEN-Mutant Prostate Cancer Progression. Cancer Cell, 2011, 20, 173-186.	16.8	158
78	Disruption of the Interface between the Pleckstrin Homology (PH) and Kinase Domains of Akt Protein Is Sufficient for Hydrophobic Motif Site Phosphorylation in the Absence of mTORC2. Journal of Biological Chemistry, 2011, 286, 39122-39129.	3.4	34
79	Hydrophobic Motif Phosphorylation Is Not Required for Activation Loop Phosphorylation of p70 Ribosomal Protein S6 Kinase 1 (S6K1). Journal of Biological Chemistry, 2011, 286, 23552-23558.	3.4	40
80	Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form. Journal of Biological Chemistry, 2011, 286, 28922-28930.	3.4	34
81	Protein Kinase Cα Promotes Cell Migration through a PDZ-Dependent Interaction with its Novel Substrate Discs Large Homolog 1 (DLG1). Journal of Biological Chemistry, 2011, 286, 43559-43568.	3.4	53
82	Mislocalization of the E3 Ligase, β-Transducin Repeat-containing Protein 1 (β-TrCP1), in Glioblastoma Uncouples Negative Feedback between the Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase 1 (PHLPP1) and Akt. Journal of Biological Chemistry, 2011, 286, 19777-19788.	3.4	43
83	Cutting Edge: PHLPP Regulates the Development, Function, and Molecular Signaling Pathways of Regulatory T Cells. Journal of Immunology, 2011, 186, 5533-5537.	0.8	63
84	Spatiotemporally Distinct Protein Kinase D Activation in Adult Cardiomyocytes in Response to Phenylephrine and Endothelin. Journal of Biological Chemistry, 2011, 286, 33390-33400.	3.4	38
85	Genetically Encoded Fluorescent Reporters to Visualize Protein Kinase C Activation in Live Cells. Methods in Molecular Biology, 2011, 756, 295-310.	0.9	13
86	Protein Kinase C. , 2010, , 1123-1129.		0
87	Calcium Transduces Plasma Membrane Receptor Signals to Produce Diacylglycerol at Golgi Membranes. Journal of Biological Chemistry, 2010, 285, 22748-22752.	3.4	33
88	Protein phosphatase PHLPP1 controls the light-induced resetting of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1642-1647.	7.1	58
89	Protein Kinase C δ-specific Activity Reporter Reveals Agonist-evoked Nuclear Activity Controlled by Src Family of Kinases. Journal of Biological Chemistry, 2010, 285, 41896-41910.	3.4	46
90	Protein kinase C: poised to signal. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E395-E402.	3.5	457

#	Article	IF	CITATIONS
91	PHLPP-1 Negatively Regulates Akt Activity and Survival in the Heart. Circulation Research, 2010, 107, 476-484.	4.5	115
92	Discovery of Small Molecule Inhibitors of the PH Domain Leucine-Rich Repeat Protein Phosphatase (PHLPP) by Chemical and Virtual Screening. Journal of Medicinal Chemistry, 2010, 53, 6899-6911.	6.4	75
93	Interaction with AKAP79 Modifies the Cellular Pharmacology of PKC. Molecular Cell, 2010, 37, 541-550.	9.7	117
94	PHLPP. , 2010, , 843-848.		0
95	Regulation of Conventional and Novel Protein Kinase C Isozymes by Phosphorylation and Lipids. , 2010, , 9-23.		4
96	Protein kinase C δ signaling at mitochondria revealed by live cell fluorescence imaging, chemical genetics, and biochemical studies. FASEB Journal, 2010, 24, .	0.5	0
97	Common Polymorphism in the Phosphatase PHLPP2 Results in Reduced Regulation of Akt and Protein Kinase C. Journal of Biological Chemistry, 2009, 284, 15215-15223.	3.4	36
98	The Chaperones Hsp90 and Cdc37 Mediate the Maturation and Stabilization of Protein Kinase C through a Conserved PXXP Motif in the C-terminal Tail*. Journal of Biological Chemistry, 2009, 284, 4921-4935.	3.4	97
99	The Protein Scaffold NHERF-1 Controls the Amplitude and Duration of Localized Protein Kinase D Activity. Journal of Biological Chemistry, 2009, 284, 24653-24661.	3.4	36
100	Lipid activation of protein kinases. Journal of Lipid Research, 2009, 50, S266-S271.	4.2	138
101	Spatiotemporal Dynamics of Kinase Signaling Visualized by Targeted Reporters. Current Protocols in Chemical Biology, 2009, 1, 17-28.	1.7	17
102	Protein kinase C. IUBMB Life, 2008, 60, 765-768.	3.4	8
103	Spatiotemporal dynamics of lipid signaling: Protein kinase C as a paradigm. IUBMB Life, 2008, 60, 782-789.	3.4	102
104	The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO Journal, 2008, 27, 1932-1943.	7.8	482
105	PHLiPPing the switch on Akt and protein kinase C signaling. Trends in Endocrinology and Metabolism, 2008, 19, 223-230.	7.1	169
106	The Phosphatase PHLPP Controls the Cellular Levels of Protein Kinase C. Journal of Biological Chemistry, 2008, 283, 6300-6311.	3.4	180
107	Kinetic Analysis of the Interaction of the C1 Domain of Protein Kinase C with Lipid Membranes by Stopped-flow Spectroscopy. Journal of Biological Chemistry, 2008, 283, 7885-7893.	3.4	33
108	The Life and Death of Protein Kinase C. Current Drug Targets, 2008, 9, 614-625.	2.1	125

#	Article	IF	CITATIONS
109	Calcium-dependent Regulation of Protein Kinase D Revealed by a Genetically Encoded Kinase Activity Reporter. Journal of Biological Chemistry, 2007, 282, 6733-6742.	3.4	93
110	A Single Residue in the C1 Domain Sensitizes Novel Protein Kinase C Isoforms to Cellular Diacylglycerol Production. Journal of Biological Chemistry, 2007, 282, 826-830.	3.4	145
111	Amplitude Control of Protein Kinase C by RINCK, a Novel E3 Ubiquitin Ligase. Journal of Biological Chemistry, 2007, 282, 33776-33787.	3.4	61
112	PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. Molecular Cell, 2007, 25, 917-931.	9.7	527
113	Induced Fit and Wit: Celebrating the Life of Daniel E. Koshland, Jr. (1920Â-Â2007). IUBMB Life, 2007, 59, 741-743.	3.4	1
114	Invariant Leu Preceding Turn Motif Phosphorylation Site Controls the Interaction of Protein Kinase C with Hsp70. Journal of Biological Chemistry, 2006, 281, 32461-32468.	3.4	33
115	Increased Membrane Affinity of the C1 Domain of Protein Kinase CÎ [^] Compensates for the Lack of Involvement of Its C2 Domain in Membrane Recruitment. Journal of Biological Chemistry, 2006, 281, 1660-1669.	3.4	112
116	Targeting Protein Kinase C Activity Reporter to Discrete Intracellular Regions Reveals Spatiotemporal Differences in Agonist-dependent Signaling. Journal of Biological Chemistry, 2006, 281, 30947-30956.	3.4	169
117	Spatio-temporal Dynamics of Protein Kinase B/Akt Signaling Revealed by a Genetically Encoded Fluorescent Reporter. Journal of Biological Chemistry, 2005, 280, 5581-5587.	3.4	188
118	PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promotes Apoptosis, and Suppresses Tumor Growth. Molecular Cell, 2005, 18, 13-24.	9.7	796
119	Centrosomal Anchoring of Protein Kinase C βII by Pericentrin Controls Microtubule Organization, Spindle Function, and Cytokinesis. Journal of Biological Chemistry, 2004, 279, 4829-4839.	3.4	86
120	Diacylglycerol's affair with protein kinase C turns 25. Trends in Pharmacological Sciences, 2004, 25, 175-177.	8.7	75
121	Protein Kinase C Family. , 2004, , 523-526.		3
122	Pathway Illuminated: Visualizing Protein Kinase C Signaling. IUBMB Life, 2003, 55, 653-660.	3.4	45
123	A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. Journal of Cell Biology, 2003, 161, 899-909.	5.2	524
124	Protein Kinase C Translocation by Modified Phorbol Esters with Functionalized Lipophilic Regions. Journal of Organic Chemistry, 2003, 68, 5028-5036.	3.2	34
125	Contribution of the C1A and C1B Domains to the Membrane Interaction of Protein Kinase Câ€. Biochemistry, 2003, 42, 11194-11202.	2.5	54
126	Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochemical Journal, 2003, 370, 361-371.	3.7	716

#	Article	IF	CITATIONS
127	A Ras activation pathway dependent on Syk phosphorylation of protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9470-9475.	7.1	68
128	Measuring the Interaction of Protein Kinase C with Membranes: An Introduction. , 2003, 233, 89-92.		0
129	The Ins and Outs of Protein Kinase C. , 2003, 233, 3-8.		19
130	Protein Kinase C: Relaying Signals from Lipid Hydrolysis to Protein Phosphorylation. , 2003, , 187-192.		0
131	Protein Kinase C: Relaying Signals from Lipid Hydrolysis to Protein Phosphorylation. , 2003, , 551-556.		0
132	The Turn Motif Is a Phosphorylation Switch That Regulates the Binding of Hsp70 to Protein Kinase C. Journal of Biological Chemistry, 2002, 277, 31585-31592.	3.4	127
133	Regulation of novel protein kinase C $\hat{I}\mu$ by phosphorylation. Biochemical Journal, 2002, 363, 537.	3.7	111
134	Regulation of novel protein kinase C $\hat{I}\mu$ by phosphorylation. Biochemical Journal, 2002, 363, 537-545.	3.7	139
135	Analyzing Protein Kinase C Activation. Methods in Enzymology, 2002, 345, 499-506.	1.0	16
136	Protein Kinase C:Â Structural and Spatial Regulation by Phosphorylation, Cofactors, and Macromolecular Interactions. Chemical Reviews, 2001, 101, 2353-2364.	47.7	884
137	Membrane Binding Kinetics of Protein Kinase C βII Mediated by the C2 Domainâ€. Biochemistry, 2001, 40, 13216-13229.	2.5	96
138	The Phosphoinositide-dependent Kinase, PDK-1, Phosphorylates Conventional Protein Kinase C Isozymes by a Mechanism That Is Independent of Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 2001, 276, 45289-45297.	3.4	101
139	Chapter 12 Cellular regulation of protein kinase C. Cell and Molecular Response To Stress, 2001, 2, 163-173.	0.4	1
140	The Carboxyl Terminus of Protein Kinase C Provides a Switch to Regulate Its Interaction with the Phosphoinositide-dependent Kinase, PDK-1. Journal of Biological Chemistry, 2001, 276, 19588-19596.	3.4	93
141	Protein kinase C isozymes and the regulation of diverse cell responses. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L429-L438.	2.9	617
142	Akt/Protein Kinase B Is Regulated by Autophosphorylation at the Hypothetical PDK-2 Site. Journal of Biological Chemistry, 2000, 275, 8271-8274.	3.4	436
143	Dual Role of Pseudosubstrate in the Coordinated Regulation of Protein Kinase C by Phosphorylation and Diacylglycerol. Journal of Biological Chemistry, 2000, 275, 10697-10701.	3.4	88

144 Cellular Signaling. Cell, 2000, 103, 185-188.

28.9 394

#	Article	IF	CITATIONS
145	The C1 and C2 Domains of Protein Kinase C Are Independent Membrane Targeting Modules, with Specificity for Phosphatidylserine Conferred by the C1 Domain. Biochemistry, 2000, 39, 11360-11369.	2.5	138
146	Carboxyl-terminal Phosphorylation Regulates the Function and Subcellular Localization of Protein Kinase C βII. Journal of Biological Chemistry, 1999, 274, 6461-6468.	3.4	120
147	Mechanism of A-kinase-anchoring protein 79 (AKAP79) and protein kinase C interaction. Biochemical Journal, 1999, 343, 443-452.	3.7	78
148	Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. BBA - Biomembranes, 1998, 1376, 155-172.	8.0	242
149	Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Current Biology, 1998, 8, 1366-1375.	3.9	357
150	Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Current Biology, 1998, 8, 1069-1078.	3.9	600
151	Lipid Structure and Not Membrane Structure Is the Major Determinant in the Regulation of Protein Kinase C by Phosphatidylserineâ€. Biochemistry, 1998, 37, 12020-12025.	2.5	44
152	Mechanism of the Apparent Cooperativity in the Interaction of Protein Kinase C with Phosphatidylserineâ€. Biochemistry, 1998, 37, 17271-17279.	2.5	35
153	Regulation of the Phosphorylation State of Rhodopsin by Dopamine. Journal of Biological Chemistry, 1998, 273, 7181-7184.	3.4	7
154	Ca2+ Differentially Regulates Conventional Protein Kinase Cs' Membrane Interaction and Activation. Journal of Biological Chemistry, 1997, 272, 25959-25967.	3.4	72
155	Phosphorylation at Conserved Carboxyl-terminal Hydrophobic Motif Regulates the Catalytic and Regulatory Domains of Protein Kinase C. Journal of Biological Chemistry, 1997, 272, 18382-18390.	3.4	142
156	A Putative Phosphatidylserine Binding Motif Is Not Involved in the Lipid Regulation of Protein Kinase C. Journal of Biological Chemistry, 1997, 272, 30787-30792.	3.4	29
157	Regulation of Protein Kinase C βII by Its C2 Domainâ€. Biochemistry, 1997, 36, 15615-15623.	2.5	92
158	Regulation of protein kinase C. Current Opinion in Cell Biology, 1997, 9, 161-167.	5.4	900
159	Taxonomy and function of C1 protein kinase C homology domains. Protein Science, 1997, 6, 477-480.	7.6	317
160	Calcium-Independent Binding to Interfacial Phorbol Esters Causes Protein Kinase C To Associate with Membranes in the Absence of Acidic Lipids. Biochemistry, 1996, 35, 1612-1623.	2.5	66
161	Diacylglycerol directly stimulates the insulin receptor tyrosine kinase. FEBS Letters, 1996, 380, 58-62.	2.8	15
162	Protein kinase C: Ports of anchor in the cell. Current Biology, 1996, 6, 806-809.	3.9	69

#	Article	IF	CITATIONS
163	Inhibition of the insulin receptor tyrosine kinase by phosphatidic acid. , 1996, 62, 516-528.		1
164	Protein Kinase C: Seeing two domains. Current Biology, 1995, 5, 973-976.	3.9	187
165	Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Current Biology, 1995, 5, 1394-1403.	3.9	450
166	Mechanism of Interaction of Protein Kinase C with Phorbol Esters. Journal of Biological Chemistry, 1995, 270, 25526-25533.	3.4	228
167	Protein Kinase C: Structure, Function, and Regulation. Journal of Biological Chemistry, 1995, 270, 28495-28498.	3.4	1,388
168	Phosphatidyl-L-serine Is Necessary for Protein Kinase C's High-Affinity Interaction with Diacylglycerol-Containing Membranes. Biochemistry, 1994, 33, 6651-6658.	2.5	133
169	Interaction of protein kinase C with phosphatidylserine. 1. Cooperativity in lipid binding. Biochemistry, 1992, 31, 4661-4667.	2.5	102
170	Interaction of protein kinase C with phosphatidylserine. 2. Specificity and regulation. Biochemistry, 1992, 31, 4667-4673.	2.5	117
171	Phosphatidylserine affects specificity of protein kinase C substrate phosphorylation and autophosphorylation. Biochemistry, 1990, 29, 6656-6661.	2.5	69
172	Two Sides of the Same Coin: Protein Kinase C Î ³ in Cancer and Neurodegeneration. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	7