Chong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3787031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carfilzomib alleviated osteoporosis by targeting PSME1/2 to activate Wnt/β-catenin signaling. Molecular and Cellular Endocrinology, 2022, 540, 111520.	1.6	6
2	Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. Small, 2022, 18, e2105388.	5.2	8
3	DLP printing of a flexible micropattern Si/PEDOT:PSS/PEG electrode for lithium-ion batteries. Chemical Communications, 2022, 58, 7642-7645.	2.2	9
4	Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioactive Materials, 2021, 6, 137-145.	8.6	81
5	3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 2021, 8, .	5.5	46
6	Scaffold 3Dâ€Printed from Metallic Nanoparticlesâ€Containing Ink Simultaneously Eradicates Tumor and Repairs Tumorâ€Associated Bone Defects. Small Methods, 2021, 5, e2100536.	4.6	27
7	Cryogenic 3D Printing of ß-TCP/PLGA Composite Scaffolds Incorporated With BpV (Pic) for Treating Early Avascular Necrosis of Femoral Head. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748151.	2.0	2
8	3D Printing of Tricalcium Phosphate/Poly Lactic-coglycolic Acid Scaffolds Loaded with Carfilzomib for Treating Critical-sized Rabbit Radial Bone Defects. International Journal of Bioprinting, 2021, 7, 405.	1.7	3
9	Multifunctional fibrous scaffolds for bone regeneration with enhanced vascularization. Journal of Materials Chemistry B, 2020, 8, 636-647.	2.9	16
10	Agrimonia pilosa polysaccharide and its sulfate derives facilitate cell proliferation and osteogenic differentiation of MC3T3-E1 cells by targeting miR-107. International Journal of Biological Macromolecules, 2020, 157, 616-625.	3.6	11
11	Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Frontiers in Bioengineering and Biotechnology, 2020, 8, 576969.	2.0	67
12	Fibronectin 1 activates WNT/Î ² -catenin signaling to induce osteogenic differentiation via integrin Î ² 1 interaction. Laboratory Investigation, 2020, 100, 1494-1502.	1.7	35
13	Vascularized neural constructs for ex-vivo reconstitution of blood-brain barrier function. Biomaterials, 2020, 245, 119980.	5.7	36
14	Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Biofabrication, 2020, 12, 025030.	3.7	54
15	Cryogenic 3D printing of porous scaffolds for <i>in situ</i> delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication, 2020, 12, 035004.	3.7	68
16	3D printing of bone tissue engineering scaffolds. Bioactive Materials, 2020, 5, 82-91.	8.6	370
17	3D-printed HA15-loaded β-Tricalcium Phosphate/ Poly (Lactic-co-glycolic acid) Bone Tissue Scaffold Promotes Bone Regeneration in Rabbit Radial Defects. International Journal of Bioprinting, 2020, 7, 317.	1.7	18
18	Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication, 2020, 12, 045025.	3.7	49

CHONG WANG

#	Article	IF	CITATIONS
19	Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect. Molecules, 2019, 24, 1669.	1.7	55
20	Sequential Production of Levulinic Acid and Porous Carbon Material from Cellulose. Materials, 2018, 11, 1408.	1.3	7
21	Electrospun multicomponent and multifunctional nanofibrous bone tissue engineering scaffolds. Journal of Materials Chemistry B, 2017, 5, 1388-1399.	2.9	45
22	Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Biofabrication, 2017, 9, 025031.	3.7	83
23	Bicomponent fibrous scaffolds made through dualâ€source dualâ€power electrospinning: Dual delivery of rhBMPâ€2 and Caâ€P nanoparticles and enhanced biological performances. Journal of Biomedical Materials Research - Part A, 2017, 105, 2199-2209.	2.1	11
24	Electrospun multifunctional tissue engineering scaffolds. Frontiers of Materials Science, 2014, 8, 3-19.	1.1	32
25	Novel Electrospun Bicomponent Scaffolds for Bone Tissue Engineering: Fabrication, Characterization and Sustained Release of Growth Factor. Materials Research Society Symposia Proceedings, 2012, 1418, 151.	0.1	0
26	Dual-source dual-power electrospinning and characteristics of multifunctional scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2381-2397.	1.7	43
27	Near-Field Direct Write Microfiber-Reinforced Collagen Hydrogel Scaffolds for Articular Cartilage Regeneration. Nano LIFE, 0, , 2141002.	0.6	0