Shan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3786996/publications.pdf Version: 2024-02-01

SHANLL

#	Article	IF	CITATIONS
1	Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials. Npj Computational Materials, 2022, 8, .	3.5	24
2	Electronic Topological Transition as a Route to Improve Thermoelectric Performance in Bi _{0.5} Sb _{1.5} Te ₃ . Advanced Science, 2022, 9, e2105709.	5.6	6
3	Achieving High Thermoelectric Performance by NaSbTe ₂ Alloying in GeTe for Simultaneous Suppression of Ge Vacancies and Band Tailoring. Advanced Energy Materials, 2022, 12, .	10.2	28
4	Enhanced thermoelectric performance of n-type TiCoSb half-Heusler by Ta doping and Hf alloying. Rare Metals, 2021, 40, 40-47.	3.6	43
5	Highâ€Performance Nâ€ŧype Mg ₃ Sb ₂ towards Thermoelectric Application near Room Temperature. Advanced Functional Materials, 2020, 30, 1906143.	7.8	78
6	Promising Zintl-Phase Thermoelectric Compound SrAgSb. Chemistry of Materials, 2020, 32, 6983-6989.	3.2	36
7	Titanium Doping to Enhance Thermoelectric Performance of 19â€Electron VCoSb Halfâ€Heusler Compounds with Vanadium Vacancies. Annalen Der Physik, 2020, 532, 1900440.	0.9	15
8	Defect Engineering for Realizing p-Type AgBiSe ₂ with a Promising Thermoelectric Performance. Chemistry of Materials, 2020, 32, 3528-3536.	3.2	17
9	Enhanced Thermoelectric Performance in Nâ€Type Mg _{3.2} Sb _{1.5} Bi _{0.5} by La or Ce Doping into Mg. Advanced Electronic Materials, 2020, 6, 1901391.	2.6	15
10	n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials. ACS Applied Materials & Interfaces, 2019, 11, 41321-41329.	4.0	44
11	Enhanced Thermoelectric Performance of Zintl Phase Ca ₉ Zn _{4+<i>x</i>} Sb ₉ by Beneficial Disorder on the Selective Cationic Site. ACS Applied Materials & Interfaces, 2019, 11, 37741-37747.	4.0	17
12	Zintl-phase Eu ₂ ZnSb ₂ : A promising thermoelectric material with ultralow thermal conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2831-2836.	3.3	103
13	Scalable and efficient Sb2S3 thin-film solar cells fabricated by close space sublimation. APL Materials, 2019, 7, .	2.2	72
14	Recent progress towards high performance of tin chalcogenide thermoelectric materials. Journal of Materials Chemistry A, 2018, 6, 2432-2448.	5.2	101
15	Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an an anionic framework. Journal of Materials Science, 2018, 53, 16001-16009.	1.7	37