Kaarina Sivonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3786108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	5.2	1,692
2	Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1053-1058.	3.3	769
3	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
4	Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 568-573.	3.3	432
5	Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9259-9264.	3.3	310
6	Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Applied and Environmental Microbiology, 1989, 55, 1990-1995.	1.4	298
7	Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 11-26.	0.8	297
8	Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and Environmental Microbiology, 1990, 56, 2658-2666.	1.4	290
9	Quantitative Real-Time PCR for Determination ofMicrocystin Synthetase E Copy Numbers for Microcystis and Anabaena inLakes. Applied and Environmental Microbiology, 2003, 69, 7289-7297.	1.4	286
10	Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. Trends in Microbiology, 2015, 23, 642-652.	3.5	266
11	Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Applied and Environmental Microbiology, 1997, 63, 2206-2212.	1.4	263
12	BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—responses to a changing environment. Continental Shelf Research, 2003, 23, 1695-1714.	0.9	259
13	Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. Applied Microbiology and Biotechnology, 2010, 86, 1213-1225.	1.7	258
14	Nonribosomal Peptide Synthesis and Toxigenicity of Cyanobacteria. Journal of Bacteriology, 1999, 181, 4089-4097.	1.0	243
15	High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME Journal, 2009, 3, 314-325.	4.4	238
16	Growth, nitrogen fixation, and nodularin production by two baltic sea cyanobacteria. Applied and Environmental Microbiology, 1997, 63, 1647-1656.	1.4	238
17	PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Archives of Microbiology, 2003, 180, 402-410.	1.0	226
18	Genes Coding for Hepatotoxic Heptapeptides (Microcystins) in the Cyanobacterium Anabaena Strain 90. Applied and Environmental Microbiology, 2004, 70, 686-692.	1.4	221

#	Article	IF	CITATIONS
19	Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia, 1990, 190, 267-275.	1.0	218
20	Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 513-526.	0.8	207
21	Detection of Microcystin-Producing Cyanobacteria in Finnish Lakes with Genus-Specific Microcystin Synthetase Gene E (mcyE) PCR and Associations with Environmental Factors. Applied and Environmental Microbiology, 2006, 72, 6101-6110.	1.4	204
22	Preliminary characterization of neurotoxic cyanobacteria blooms and strains from Finland. Toxicity Assessment, 1989, 4, 339-352.	0.6	179
23	Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography–UV detection and enzyme-linked immunosorbent assay. Analytica Chimica Acta, 2002, 466, 213-231.	2.6	175
24	Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria. BMC Genomics, 2014, 15, 977.	1.2	175
25	Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods To Detect Potential Producers. Applied and Environmental Microbiology, 2011, 77, 7271-7278.	1.4	166
26	Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Molecular Microbiology, 2000, 37, 156-167.	1.2	162
27	Removal of cyanobacterial toxins in water treatment processes: Laboratory and pilot-scale experiments. Toxicity Assessment, 1988, 3, 643-656.	0.6	158
28	Isolation and characterization of hepatotoxic microcystin homologs from the filamentous freshwater cyanobacterium Nostoc sp. strain 152. Applied and Environmental Microbiology, 1990, 56, 2650-2657.	1.4	152
29	Variation of Microcystin Content of Cyanobacterial Blooms and Isolated Strains in Lake Grand-Lieu (France). Microbial Ecology, 1998, 35, 126-135.	1.4	144
30	CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Research, 2021, 196, 117017.	5.3	142
31	Hepatotoxic microcystin diversity in cyanobacterial blooms collected in portuguese freshwaters. Water Research, 1996, 30, 2377-2384.	5.3	140
32	Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Applied and Environmental Microbiology, 1992, 58, 2495-2500.	1.4	140
33	Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquatic Microbial Ecology, 2004, 36, 201-211.	0.9	138
34	Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5886-5891.	3.3	138
35	Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I. Applied and Environmental Microbiology, 2004, 70, 5756-5763.	1.4	131
36	Three new microcystins, cyclic heptapeptide hepatotoxins, from Nostoc sp. strain 152. Chemical Research in Toxicology, 1992, 5, 464-469.	1.7	128

#	Article	IF	CITATIONS
37	Assessment of Environmental Conditions That Favor Hepatotoxic and Neurotoxic Anabaena spp. Strains Cultured under Light Limitation at Different Temperatures. Microbial Ecology, 1998, 36, 181-192.	1.4	121
38	Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) Strains from Lake Kastoria, Greece Form a Separate Phylogenetic Group. Microbial Ecology, 2005, 49, 176-182.	1.4	118
39	Bacteria Contribute to Sediment Nutrient Release and Reflect Progressed Eutrophication-Driven Hypoxia in an Organic-Rich Continental Sea. PLoS ONE, 2013, 8, e67061.	1.1	117
40	Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 1043-1053.	0.8	113
41	Development of a Universal Microarray Based on the Ligation Detection Reaction and 16S rRNA Gene Polymorphism To Target Diversity of Cyanobacteria. Applied and Environmental Microbiology, 2004, 70, 7161-7172.	1.4	113
42	Diversity of Toxic and Nontoxic Nodularia Isolates (Cyanobacteria) and Filaments from the Baltic Sea. Applied and Environmental Microbiology, 2001, 67, 4638-4647.	1.4	108
43	Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1909-17.	3.3	102
44	Two Alternative Starter Modules for the Non-Ribosomal Biosynthesis of Specific Anabaenopeptin Variants in Anabaena (Cyanobacteria). Chemistry and Biology, 2010, 17, 265-273.	6.2	100
45	Detection of toxicity of cyanobacteria byArtemia salina bioassay. Environmental Toxicology and Water Quality, 1991, 6, 423-436.	0.7	99
46	Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evolutionary Biology, 2007, 7, 183.	3.2	97
47	Occurrence of microcystins in raw water sources and treated drinking water of Finnish waterworks. Water Science and Technology, 2001, 43, 225-228.	1.2	96
48	The effects of incubation time, temperature, light, salinity, and phosphorus on growth and hepatotoxin production by Nodularia strains. Archiv Für Hydrobiologie, 1994, 130, 269-282.	1.1	96
49	Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis. PLoS ONE, 2013, 8, e60224.	1.1	95
50	Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 555-568.	0.8	90
51	Genome Mining Expands the Chemical Diversity of the Cyanobactin Family to Include Highly Modified Linear Peptides. Chemistry and Biology, 2013, 20, 1033-1043.	6.2	90
52	Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria <i>Nodularia spumigena</i> . Limnology and Oceanography, 2002, 47, 878-885.	1.6	87
53	Quantitative Real-Time PCR Detection of Toxic Nodularia Cyanobacteria in the Baltic Sea. Applied and Environmental Microbiology, 2007, 73, 2173-2179.	1.4	87
54	Comparative study of toxic and non-toxic cyanobacterial products: Novel peptides from toxic Nodularia spumigena AV1. Tetrahedron Letters, 1997, 38, 5525-5528.	0.7	86

#	Article	IF	CITATIONS
55	Low-energy collisionally activated decomposition and structural characterization of cyclic heptapeptide microcystins by electrospray ionization mass spectrometry. , 1999, 34, 33-43.		86
56	Direct Evidence for Production of Microcystins by <i>Anabaena</i> Strains from the Baltic Sea. Applied and Environmental Microbiology, 2007, 73, 6543-6550.	1.4	86
57	Non-Toxic Peptides from Toxic Cyanobacteria, Oscillatoria agardhii. Tetrahedron, 2000, 56, 725-733.	1.0	84
58	The presence of microcystins and other cyanobacterial bioactive peptides in aquatic fauna collected from Greek freshwaters. Aquatic Toxicology, 2006, 78, 32-41.	1.9	84
59	Antifungal Compounds from Cyanobacteria. Marine Drugs, 2015, 13, 2124-2140.	2.2	83
60	Newly isolated <i>Nodularia</i> phage influences cyanobacterial community dynamics. Environmental Microbiology, 2017, 19, 273-286.	1.8	83
61	Characterization of toxin-producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer. Journal of Bacteriology, 1995, 177, 6021-6026.	1.0	82
62	Genome Mining Demonstrates the Widespread Occurrence of Gene Clusters Encoding Bacteriocins in Cyanobacteria. PLoS ONE, 2011, 6, e22384.	1.1	78
63	Anatoxin-a producing Tychonema (Cyanobacteria) in European waterbodies. Water Research, 2015, 69, 68-79.	5.3	77
64	Strains of the toxic and bloom-forming <i>Nodularia spumigena</i> (cyanobacteria) can degrade methylphosphonate and release methane. ISME Journal, 2018, 12, 1619-1630.	4.4	75
65	Highly Diverse Cyanobactins in Strains of the Genus <i>Anabaena</i> . Applied and Environmental Microbiology, 2010, 76, 701-709.	1.4	73
66	Toxicity and isolation of the cyanobacterium Nodularia spumigena from the southern Baltic Sea in 1986. Hydrobiologia, 1989, 185, 3-8.	1.0	70
67	Isolation and identification of 12 microcystins from four strains and two bloom samples of Microcystis spp.: structure of a new hepatotoxin. Toxicon, 1994, 32, 133-139.	0.8	70
68	Effects of Phosphate and Light on Growth of and Bioactive Peptide Production by the Cyanobacterium Anabaena Strain 90 and Its Anabaenopeptilide Mutant. Applied and Environmental Microbiology, 2004, 70, 4551-4560.	1.4	69
69	Identification of hepatotoxinâ€producing cyanobacteria by DNAâ€chip. Environmental Microbiology, 2008, 10, 653-664.	1.8	66
70	Diversity of <i>Aphanizomenon flos-aquae</i> (Cyanobacterium) Populations along a Baltic Sea Salinity Gradient. Applied and Environmental Microbiology, 2002, 68, 5296-5303.	1.4	65
71	New Structural Variants of Aeruginosin Produced by the Toxic Bloom Forming Cyanobacterium Nodularia spumigena. PLoS ONE, 2013, 8, e73618.	1.1	65
72	Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1867-1880.	0.8	64

#	Article	IF	CITATIONS
73	Cultureâ€independent evidence for the persistent presence and genetic diversity of microcystinâ€producing <i>Anabaena</i> (<i>Cyanobacteria</i>) in the Gulf of Finland. Environmental Microbiology, 2009, 11, 855-866.	1.8	64
74	Diversity of hepatotoxic microcystins and bioactive anabaenopeptins in cyanobacterial blooms from Greek freshwaters. Environmental Toxicology, 2005, 20, 249-256.	2.1	63
75	The nonâ€ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloomâ€forming cyanobacterium <i>Nodularia spumigena</i> . Molecular Microbiology, 2009, 73, 924-937.	1.2	63
76	Structures of three new homotyrosine-containing microcystins and a new homophenylalanine variant from Anabaena sp. strain 66. Chemical Research in Toxicology, 1992, 5, 661-666.	1.7	62
77	Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiology Ecology, 2007, 61, 74-84.	1.3	60
78	Characterization of Cyanobacteria by SDS-PAGE of whole-cell proteins and PCR/RFLP of the 16S rRNA gene. Archives of Microbiology, 1997, 168, 176-184.	1.0	58
79	Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria. Applied and Environmental Microbiology, 2009, 75, 853-857.	1.4	57
80	Development of a Chip Assay and Quantitative PCR for Detecting Microcystin Synthetase E Gene Expression. Applied and Environmental Microbiology, 2010, 76, 3797-3805.	1.4	57
81	Effects of dissolved cyanobacterial toxins on the survival and egg hatching of estuarine calanoid copepods. Marine Biology, 2002, 140, 577-583.	0.7	56
82	Seven New Microcystins Possessing Two l-Glutamic Acid Units, Isolated from Anabaena sp. Strain 186. Chemical Research in Toxicology, 1998, 11, 143-149.	1.7	54
83	Nostophycin, a Novel Cyclic Peptide from the Toxic CyanobacteriumNostocsp. 152. Journal of Organic Chemistry, 1999, 64, 5777-5782.	1.7	54
84	Analysis of an Inactive Cyanobactin Biosynthetic Gene Cluster Leads to Discovery of New Natural Products from Strains of the Genus Microcystis. PLoS ONE, 2012, 7, e43002.	1.1	54
85	Cyanobacterial Toxic and Bioactive Peptides in Freshwater Bodies of Greece: Concentrations, Occurrence Patterns, and Implications for Human Health. Marine Drugs, 2015, 13, 6319-6335.	2.2	53
86	Marine Benthic Cyanobacteria Contain Apoptosis-Inducing Activity Synergizing with Daunorubicin to Kill Leukemia Cells, but not Cardiomyocytes. Marine Drugs, 2010, 8, 2659-2672.	2.2	52
87	Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics, 2012, 13, 613.	1.2	52
88	Comparative study of toxic and non-toxic cyanobacterial products: A novel glycoside, suomilide, from non-toxic Nodularia spumigena HKVV. Tetrahedron Letters, 1997, 38, 5529-5532.	0.7	51
89	Phosphorus Chemistry and Bacterial Community Composition Interact in Brackish Sediments Receiving Agricultural Discharges. PLoS ONE, 2011, 6, e21555.	1.1	51
90	Toxicity of cyanobacteria to mosquito larvae—screening of active compounds. Environmental Toxicology and Water Quality, 1993, 8, 63-71.	0.7	49

#	Article	IF	CITATIONS
91	Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Research, 2015, 11, 411-420.	2.4	49
92	Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress. Applied and Environmental Microbiology, 2015, 81, 5212-5222.	1.4	49
93	A Unique Tryptophan Câ€Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angewandte Chemie - International Edition, 2016, 55, 3596-3599.	7.2	49
94	CORRESPONDENCE BETWEEN PHYLOGENY AND MORPHOLOGY OF SNOWELLA SPP. AND WORONICHINIA NAEGELIANA, CYANOBACTERIA COMMONLY OCCURRING IN LAKES1. Journal of Phycology, 2006, 42, 226-232.	1.0	47
95	A Novel Cyanobacterial Nostocyclopeptide is a Potent Antitoxin against Microcystins. ChemBioChem, 2010, 11, 1594-1599.	1.3	47
96	Occurrence of microcystin-containing cyanobacterial blooms in freshwaters of Brittany (France). Archiv FĂ¼r Hydrobiologie, 1997, 139, 401-413.	1.1	47
97	Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evolutionary Biology, 2008, 8, 256.	3.2	46
98	Structural elucidation of cyanobacterial peptides encoded by peptide synthetase gene in Anabaena species. Tetrahedron, 2002, 58, 6863-6871.	1.0	44
99	Bacterial Diversity and Function in the Baltic Sea with an Emphasis on Cyanobacteria. Ambio, 2007, 36, 180-185.	2.8	43
100	Microcystin Production in the Tripartite Cyanolichen <i>Peltigera leucophlebia</i> . Molecular Plant-Microbe Interactions, 2009, 22, 695-702.	1.4	43
101	Isolation and structures of microcystins from a cyanobacterial water bloom (Finland). Toxicon, 1992, 30, 1473-1479.	0.8	42
102	Nostosins, Trypsin Inhibitors Isolated from the Terrestrial Cyanobacterium <i>Nostoc</i> sp. Strain FSN. Journal of Natural Products, 2014, 77, 1784-1790.	1.5	41
103	Cyanobacterial Toxins. , 2009, , 290-307.		39
104	Antitumor astins originate from the fungal endophyte <i>Cyanodermella asteris</i> living within the medicinal plant <i>Aster tataricus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26909-26917.	3.3	39
105	Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea). FEMS Microbiology Ecology, 2008, 64, 199-208.	1.3	38
106	Associations of Cyanobacterial Toxin, Nodularin, with Environmental Factors and Zooplankton in the Baltic Sea. Microbial Ecology, 2004, 47, 350-8.	1.4	37
107	Expression of the nodularin synthetase genes in the Baltic Sea bloom-former cyanobacterium Nodularia spumigena strain AV1. FEMS Microbiology Ecology, 2008, 65, 31-39.	1.3	36
108	Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology (United Kingdom), 2008, 154, 1007-1014.	0.7	36

#	Article	IF	CITATIONS
109	Effects of Nutrients on Growth and Nodularin Production of Nodularia Strain GR8b. Microbial Ecology, 2001, 42, 606-613.	1.4	35
110	The lipopeptide toxins anabaenolysin A and B target biological membranes in a cholesterol-dependent manner. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3000-3009.	1.4	35
111	Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium <i>Nostoc</i> sp. CENA543. ACS Chemical Biology, 2017, 12, 2746-2755.	1.6	35
112	Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543. Frontiers in Microbiology, 2017, 8, 1963.	1.5	35
113	Phylogenomic Analysis of Secondary Metabolism in the Toxic Cyanobacterial Genera Anabaena, Dolichospermum and Aphanizomenon. Toxins, 2020, 12, 248.	1.5	34
114	Benthic cyanobacteria from the Baltic Sea contain cytotoxicAnabaena,Nodularia, andNostoc strains and an apoptosis-inducingPhormidium strain. Environmental Toxicology, 2005, 20, 285-292.	2.1	33
115	Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Current Opinion in Genetics and Development, 2015, 35, 79-85.	1.5	33
116	Anabaenolysins, Novel Cytolytic Lipopeptides from Benthic Anabaena Cyanobacteria. PLoS ONE, 2012, 7, e41222.	1.1	33
117	First report of the cyanobacterium Aphanizomenon ovalisporum Forti in two Greek lakes and cyanotoxin occurrence. Journal of Plankton Research, 2005, 27, 1295-1300.	0.8	32
118	Biosynthesis of the Bis-Prenylated Alkaloids Muscoride A and B. ACS Chemical Biology, 2019, 14, 2683-2690.	1.6	32
119	Emerging high throughput analyses of cyanobacterial toxins and toxic cyanobacteria. , 2008, 619, 539-557.		31
120	Hydrogen Photoproduction by Immobilized N ₂ -Fixing Cyanobacteria: Understanding the Role of the Uptake Hydrogenase in the Long-Term Process. Applied and Environmental Microbiology, 2014, 80, 5807-5817.	1.4	31
121	Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability. Royal Society Open Science, 2016, 3, 160839.	1.1	31
122	Post-Translational Tyrosine Geranylation in Cyanobactin Biosynthesis. Journal of the American Chemical Society, 2018, 140, 6044-6048.	6.6	31
123	Phosphorus limitation and diel control of nitrogen-fixing cyanobacteria in the Baltic Sea. Marine Ecology - Progress Series, 2007, 345, 41-50.	0.9	31
124	Nostocyclopeptide-M1: A Potent, Nontoxic Inhibitor of the Hepatocyte Drug Transporters OATP1B3 and OATP1B1. Molecular Pharmaceutics, 2011, 8, 360-367.	2.3	29
125	Nostophycin Biosynthesis Is Directed by a Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase in the Toxic Cyanobacterium Nostoc sp. Strain 152. Applied and Environmental Microbiology, 2011, 77, 8034-8040.	1.4	29
126	Convergent evolution of [D-Leucine1] microcystin-LR in taxonomically disparate cyanobacteria. BMC Evolutionary Biology, 2013, 13, 86.	3.2	29

#	Article	IF	CITATIONS
127	4-Methylproline Guided Natural Product Discovery: Co-Occurrence of 4-Hydroxy- and 4-Methylprolines in Nostoweipeptins and Nostopeptolides. ACS Chemical Biology, 2014, 9, 2646-2655.	1.6	28
128	A high proportion of Baltic Sea benthic cyanobacterial isolates contain apoptogens able to induce rapid death of isolated rat hepatocytes. Toxicon, 2005, 46, 252-260.	0.8	27
129	Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13669-13674.	3.3	27
130	Discovery of a Pederin Family Compound in a Nonsymbiotic Bloom-Forming Cyanobacterium. ACS Chemical Biology, 2018, 13, 1123-1129.	1.6	27
131	Sphaerocyclamide, a prenylated cyanobactin from the cyanobacterium Sphaerospermopsis sp. LEGE 00249. Scientific Reports, 2018, 8, 14537.	1.6	27
132	Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins, 2020, 12, 12.	1.5	27
133	Nodularin uptake and induction of oxidative stress in spinach (Spinachia oleracea). Journal of Plant Physiology, 2011, 168, 594-600.	1.6	26
134	Pathologic Findings and Toxin Identification in Cyanobacterial (<i>Nodularia spumigena</i>) Intoxication in a Dog. Veterinary Pathology, 2012, 49, 755-759.	0.8	26
135	Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea. PLoS ONE, 2017, 12, e0186360.	1.1	26
136	N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway. Biochemistry, 2018, 57, 6860-6867.	1.2	26
137	Genetic Organization of Anabaenopeptin and Spumigin Biosynthetic Gene Clusters in the Cyanobacterium <i>Sphaerospermopsis torques-reginae</i> ITEP-024. ACS Chemical Biology, 2017, 12, 769-778.	1.6	25
138	Rearranged Biosynthetic Gene Cluster and Synthesis of Hassallidin E in <i>Planktothrix serta</i> PCC 8927. ACS Chemical Biology, 2017, 12, 1796-1804.	1.6	25
139	Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1510-1521.	1.4	25
140	Repeat-type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 765-772.	0.8	24
141	Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides. Applied and Environmental Microbiology, 2019, 85, .	1.4	24
142	Effect of amino acid side-chain on fragmentation of cyclic peptide ions: differences of ESI-MS/CID mass spectra of toxic heptapeptide microcystins containing ADMAdda instead of Adda. European Journal of Mass Spectrometry, 1998, 4, 287.	0.7	23
143	Toxic cyanobacteria in some finnish lakes. Environmental Toxicology and Water Quality, 1992, 7, 201-213.	0.7	22
144	Pseudoaeruginosins, Nonribosomal Peptides inNodularia spumigena. ACS Chemical Biology, 2015, 10, 725-733.	1.6	22

#	Article	IF	CITATIONS
145	Competition between a toxic and a non-toxic Microcystis strain under constant and pulsed nitrogen and phosphorus supply. Aquatic Ecology, 2017, 51, 117-130.	0.7	22
146	The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450. Applied and Environmental Microbiology, 2018, 84, .	1.4	21
147	Comparison of ¹⁵ N ₂ and acetylene reduction methods for the measurement of nitrogen fixation by Baltic Sea cyanobacteria. Phycologia, 1996, 35, 140-146.	0.6	20
148	Acyloxymethyl Esterification of Nodularin-R and Microcystin-LA Produces Inactive Protoxins that Become Reactivated and Produce Apoptosis inside Intact Cells. Journal of Medicinal Chemistry, 2009, 52, 5758-5762.	2.9	20
149	Nonâ€autonomous transposable elements associated with inactivation of microcystin gene clusters in strains of the genus <i>Anabaena</i> isolated from the Baltic Sea. Environmental Microbiology Reports, 2011, 3, 189-194.	1.0	20
150	The Genetic Basis for O-Acetylation of the Microcystin Toxin in Cyanobacteria. Chemistry and Biology, 2013, 20, 861-869.	6.2	20
151	The Biosynthesis of Rare Homo-Amino Acid Containing Variants of Microcystin by a Benthic Cyanobacterium. Marine Drugs, 2019, 17, 271.	2.2	20
152	Cyclic peptide production using a macrocyclase with enhanced substrate promiscuity and relaxed recognition determinants. Chemical Communications, 2017, 53, 10656-10659.	2.2	19
153	Detection of toxicity of cyanobacterial strains using Artemia salina and MicrotoxR assays compared with mouse bioassay results. Phycologia, 1996, 35, 198-202.	0.6	17
154	Draft genome sequence of Talaromyces islandicus ("Penicillium islandicumâ€) WF-38-12, a neglected mold with significant biotechnological potential. Journal of Biotechnology, 2015, 211, 101-102.	1.9	17
155	<i>Cyanodermella asteris</i> sp. nov. (<i>Ostropales</i>) from the inflorescence axis of <i> Aster tataricus</i> . Mycotaxon, 2017, 132, 107-123.	0.1	16
156	Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. Physiologia Plantarum, 2021, 173, 639-650.	2.6	16
157	Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells. Marine Drugs, 2014, 12, 2036-2053.	2.2	15
158	The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in <i>Talaromyces islandicus</i> (â€~ <i>Penicillium islandicum</i> '). Environmental Microbiology, 2016, 18, 3728-3741.	1.8	15
159	Comparative Genomics of the Baltic Sea Toxic Cyanobacteria Nodularia spumigena UHCC 0039 and Its Response to Varying Salinity. Frontiers in Microbiology, 2018, 9, 356.	1.5	15
160	Biosynthesis of microcystin hepatotoxins in the cyanobacterial genus Fischerella. Toxicon, 2018, 141, 43-50.	0.8	15
161	Variation of Cyanobacterial Hepatotoxins in Finland. , 1994, , 152-154.		15
162	Cyanobacteria as a Source for Novel Anti-Leukemic Compounds. Current Pharmaceutical Biotechnology, 2015, 17, 78-91.	0.9	15

#	Article	IF	CITATIONS
163	Cyanobacterial community composition in shallow, eutrophic Lake Tuusulanjarvi studied by microscopy, strain isolation, DGGE and cloning. Algological Studies (Stuttgart, Germany: 2007), 2008, 126, 137-157.	0.4	14
164	Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315. Scientific Reports, 2019, 9, 4888.	1.6	14
165	Shared PKS Module in Biosynthesis of Synergistic Laxaphycins. Frontiers in Microbiology, 2020, 11, 578878.	1.5	14
166	Aminopeptidase and phosphatase activities in basins of Lake Hiidenvesi dominated by cyanobacteria and in laboratory grown Anabaena. Freshwater Biology, 2002, 47, 1582-1593.	1.2	13
167	A liquid chromatography–mass spectrometric method for the detection of cyclic β-amino fatty acid lipopeptides. Journal of Chromatography A, 2016, 1438, 76-83.	1.8	13
168	Cyanobacterial toxins detected by Thamnotoxkit (a double blind experiment). Environmental Toxicology, 2000, 15, 549-553.	2.1	12
169	Mining of Cyanobacterial Genomes Indicates Natural Product Biosynthetic Gene Clusters Located in Conjugative Plasmids. Frontiers in Microbiology, 2021, 12, 684565.	1.5	12
170	Coupling biogeochemical process rates and metagenomic blueprints of coastal bacterial assemblages in the context of environmental change. Environmental Microbiology, 2018, 20, 3083-3099.	1.8	11
171	Potent Inhibitor of Human Trypsins from the Aeruginosin Family of Natural Products. ACS Chemical Biology, 2021, 16, 2537-2546.	1.6	11
172	Draft Genome Sequence of Calothrix Strain 336/3, a Novel H ₂ -Producing Cyanobacterium Isolated from a Finnish Lake. Genome Announcements, 2015, 3, .	0.8	10
173	Genomic and Metabolomic Analyses of Natural Products in Nodularia spumigena Isolated from a Shrimp Culture Pond. Toxins, 2020, 12, 141.	1.5	8
174	Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic – Taxonomical, analytical, and molecular approaches. Harmful Algae, 2021, 108, 102101.	2.2	8
175	Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins. Organic and Biomolecular Chemistry, 2022, 20, 2681-2692.	1.5	8
176	Using Microcystin Gene Copies to Determine Potentially-Toxic Blooms, Example from a Shallow Eutrophic Lake Peipsi. Toxins, 2020, 12, 211.	1.5	7
177	<scp>NordAqua</scp> , a Nordic Center of Excellence to develop an algaeâ€based photosynthetic production platform. Physiologia Plantarum, 2021, 173, 507-513.	2.6	7
178	Molecular Methods: Chip Assay and Quantitative Real-Time PCR: In Detecting Hepatotoxic Cyanobacteria. Methods in Molecular Biology, 2011, 739, 73-86.	0.4	7
179	Nodularia spumigena extract induces upregulation of mitochondrial respiratory chain complexes in spinach (Spinacia oleracea L.). Acta Physiologiae Plantarum, 2013, 35, 969-974.	1.0	6
180	A Unique Tryptophan Câ€Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angewandte Chemie, 2016, 128, 3660-3663.	1.6	6

0

#	Article	IF	CITATIONS
181	The structure and biosynthesis of heinamides A1–A3 and B1–B5, antifungal members of the laxaphycin lipopeptide family. Organic and Biomolecular Chemistry, 2021, 19, 5577-5588.	1.5	5
182	Genome Reduction and Secondary Metabolism of the Marine Sponge-Associated Cyanobacterium Leptothoe. Marine Drugs, 2021, 19, 298.	2.2	4
183	Effects of allochthonous dissolved organic matter input on microbial composition and nitrogen-cycling genes at two contrasting estuarine sites. FEMS Microbiology Ecology, 2019, 95, .	1.3	3
184	Hydrophobic derivatives of 5â€{hydroxymethyl)isophthalic acid that selectively induce apoptosis in leukemia cells but not in fibroblasts. Drug Development Research, 2008, 69, 185-195.	1.4	2
185	Low-energy collisionally activated decomposition and structural characterization of cyclic heptapeptide microcystins by electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 1999, 34, 33.	0.7	2
186	Rapid purification of the peptide toxins microcystin-LR and nodularin. FEMS Microbiology Letters, 1990, 68, 1-5.	0.7	2
187	Evaluating Eucalyptus leaf colonization by Brasilonema octagenarum (Cyanobacteria,) Tj ETQq1 1 0.784314 rgBT	/Overlock	10 Tf 50 5
188	Fatty Acid Substitutions Modulate the Cytotoxicity of Puwainaphycins/Minutissamides Isolated from the Baltic Sea Cyanobacterium <i>Nodularia harveyana</i> UHCC-0300. ACS Omega, 2022, 7, 11818-11828.	1.6	2
189	Frequency of virusâ€resistant hosts determines experimental community dynamics. Ecology, 2019, 100, e02554.	1.5	1
190	Monitoring of Toxigenic Cyanobacteria Using Next-Generation Sequencing Techniques. , 2017, , 277-299.		0
191	Nucleic Acid Extraction. , 2017, , 135-161.		0

192

DNA (Diagnostic) and cDNA Microarray., 2017, , 241-261.