Julieta L Orlando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3785512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Science Writing in Higher Education: Effects of Teaching Self-Assessment of Scientific Poster Construction on Writing Quality and Academic Achievement― International Journal of Science and Mathematics Education, 2022, 20, 89-110.	2.5	5
2	Diversity of Microbial Functional Genes Should Be Considered During the Interpretation of the qPCR Melting Curves. Microbial Ecology, 2022, 84, 935-940.	2.8	1
3	Cluster roots of Embothrium coccineum growing under field conditions differentially shape microbial diversity according to their developmental stage. Journal of Soil Science and Plant Nutrition, 2022, 22, 2418-2433.	3.4	1
4	<i>Conyza bonariensis</i> as an alternative host for <i>Colletotrichum</i> species in Argentina. Journal of Applied Microbiology, 2021, 130, 1656-1670.	3.1	1
5	The Bacterial Community of the Foliose Macro-lichen Peltigera frigida Is More than a Mere Extension of the Subjacent Substrate. Microbial Ecology, 2021, 81, 965-976.	2.8	19
6	The multi metal-resistant bacterium <i>Cupriavidus metallidurans</i> CH34 affects growth and metal mobilization in <i>Arabidopsis thaliana</i> plants exposed to copper. PeerJ, 2021, 9, e11373.	2.0	6
7	Exploring the Microdiversity Within Marine Bacterial Taxa: Toward an Integrated Biogeography in the Southern Ocean. Frontiers in Microbiology, 2021, 12, 703792.	3.5	9
8	Diversity of microbial communities and genes involved in nitrous oxide emissions in Antarctic soils impacted by marine animals as revealed by metagenomics and 100 metagenome-assembled genomes. Science of the Total Environment, 2021, 788, 147693.	8.0	12
9	Plants colonizing volcanic deposits: root adaptations and effects on rhizosphere microorganisms. Plant and Soil, 2021, 461, 265-279.	3.7	13
10	Characterization of the Gut Microbiota of the Antarctic Heart Urchin (Spatangoida) Abatus agassizii. Frontiers in Microbiology, 2020, 11, 308.	3.5	22
11	Seabird and pinniped shape soil bacterial communities of their settlements in Cape Shirreff, Antarctica. PLoS ONE, 2019, 14, e0209887.	2.5	10
12	Phototrophic bacteria dominate consortia, potentially to remove CO2 and H2S from biogas under microaerophilic conditions. International Journal of Environmental Science and Technology, 2018, 15, 649-658.	3.5	1
13	Nitrogen-Fixing Bacteria Associated with Peltigera Cyanolichens and Cladonia Chlorolichens. Molecules, 2018, 23, 3077.	3.8	30
14	Carbon Consumption Patterns of Microbial Communities Associated with Peltigera Lichens from a Chilean Temperate Forest. Molecules, 2018, 23, 2746.	3.8	8
15	Substrates On Which Lichens Grow Appear To Act As Reservoir Of Lichen Photobionts. , 2018, , .		0
16	Substrates of Peltigera Lichens as a Potential Source of Cyanobionts. Microbial Ecology, 2017, 74, 561-569.	2.8	25
17	Microbial communities of bulk and eschscholzia californica rhizosphere soils at two altitudes in Central Chile. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	3
18	Environmental conditions shape soil bacterial community structure in a fragmented landscape. Soil Biology and Biochemistry, 2016, 103, 39-45.	8.8	12

JULIETA L ORLANDO

#	Article	IF	CITATIONS
19	Intrinsic factors ofPeltigeralichens influence the structure of the associated soil bacterial microbiota. FEMS Microbiology Ecology, 2016, 92, fiw178.	2.7	20
20	Fungal communities as an experimental approach to Darwin's naturalization hypothesis. Research in Microbiology, 2016, 167, 126-132.	2.1	3
21	Phylogenetic Diversity of <i>Peltigera</i> Cyanolichens and Their Photobionts in Southern Chile and Antarctica. Microbes and Environments, 2015, 30, 172-179.	1.6	26
22	Designing a SCAR molecular marker for monitoring Trichoderma cf. harzianum in experimental communities. Journal of Zhejiang University: Science B, 2014, 15, 966-978.	2.8	11
23	Environmental context shapes the bacterial community structure associated to Peltigera cyanolichens growing in Tierra del Fuego, Chile. World Journal of Microbiology and Biotechnology, 2014, 30, 1141-1144.	3.6	13
24	Genetic diversity of terricolous Peltigera cyanolichen communities in different conservation states of native forest from southern Chile. International Microbiology, 2013, 16, 243-52.	2.4	12
25	Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil. Frontiers in Microbiology, 2012, 3, 282.	3.5	14
26	Diversity and Activity of Denitrifiers of Chilean Arid Soil Ecosystems. Frontiers in Microbiology, 2012, 3, 101.	3.5	38
27	Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production. Radiation Physics and Chemistry, 2011, 80, 658-663.	2.8	22
28	Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a "desert bloom―event. Soil Biology and Biochemistry, 2010, 42, 1183-1188.	8.8	50
29	Aspergillus fumigatus toxicity and gliotoxin levels in feedstuff for domestic animals and pets in Argentina. Letters in Applied Microbiology, 2010, 50, 77-81.	2.2	28
30	Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiological Research, 2009, 164, 391-399.	5.3	106
31	Comparison of soil bacterial communities associated with actinorhizal, non-actinorhizal plants and the interspaces in the sclerophyllous matorral from Central Chile in two different seasons. Journal of Arid Environments, 2009, 73, 1117-1124.	2.4	11
32	Effect of Colletia hystrix (Clos), a pioneer actinorhizal plant from the Chilean matorral, on the genetic and potential metabolic diversity of the soil bacterial community. Soil Biology and Biochemistry, 2007, 39, 2769-2776.	8.8	16
33	In vitro influence of bacterial mixtures on Fusarium verticillioides growth and fumonisin B1 production: effect of seeds treatment on maize root colonization. Letters in Applied Microbiology, 2005, 41, 390-396.	2.2	36
34	Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology, 2005, 156, 748-754.	2.1	173
35	Peltigera frigida Lichens and Their Substrates Reduce the Influence of Forest Cover Change on Phosphate Solubilizing Bacteria. Frontiers in Microbiology, 0, 13, .	3.5	1