Congcong Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3785211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface interaction and biomineralization of uranium induced by the living and dead bacterial ghosts of Kocuria sp Journal of Environmental Chemical Engineering, 2022, 10, 107295.	6.7	5
2	Mutual effects of Shewanella putrefaciens-montmorillonite and their impact on uranium immobilization. Chemosphere, 2022, 303, 135096.	8.2	4
3	Surface biomineralization of uranium onto Shewanella putrefaciens with or without extracellular polymeric substances. Ecotoxicology and Environmental Safety, 2022, 241, 113719.	6.0	4
4	Amide and phosphate groups modified bifunctional luffa fiber for highly efficient removal of U(VI) from real uranium wastewater. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 591-604.	1.5	4
5	Nano zero valent iron encapsulated in graphene oxide for reducing uranium. Chemosphere, 2021, 278, 130229.	8.2	23
6	Bonding Behavior and Mechanism of U(VI) by Chemically Modified Deinococcus radiodurans. Minerals (Basel, Switzerland), 2021, 11, 1108.	2.0	2
7	Removal of U(VI) by nano-scale zero valent iron supported on porous organic polymers. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 845-855.	1.5	3
8	Aggregation of Silica Nanoparticles in Sol–Gel Processes to Create Optical Coatings with Controllable Ultralow Refractive Indices. ACS Applied Materials & Interfaces, 2020, 12, 16887-16895.	8.0	21
9	Spectroscopic and theoretical calculation insight into interaction mechanism between U(VI) and phospholipid under carbonate environment. Journal of Molecular Liquids, 2020, 305, 112852.	4.9	3
10	Amidoxime-Functionalized Hollow Carbon Spheres for Efficient Removal of Uranium from Wastewater. ACS Sustainable Chemistry and Engineering, 2019, 7, 10800-10807.	6.7	70
11	Microorganisms and radionuclides. Interface Science and Technology, 2019, , 107-139.	3.3	6
12	Spectroscopic and theoretical investigation on efficient removal of U(VI) by amine-containing polymers. Chemical Engineering Journal, 2019, 367, 94-101.	12.7	21
13	Ultraviolet laser-induced damage of freestanding silica nanoparticle films. Applied Surface Science, 2019, 463, 566-572.	6.1	21
14	A synergistic biosorption and biomineralization strategy for Kocuria sp. to immobilizing U(VI) from aqueous solution. Journal of Molecular Liquids, 2019, 275, 215-220.	4.9	18
15	Zero-valent iron-aluminum for the fast and effective U(VI) removal. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 186-192.	5.3	34
16	Reactivity of carbonized fungi supported nanoscale zero-valent iron toward U(VI) influenced by naturally occurring ions. Journal of Industrial and Engineering Chemistry, 2018, 61, 236-243.	5.8	16
17	Macroscopic and microscopic investigation of uranium elimination by Ca–Mg–Al-layered double hydroxide supported nanoscale zero valent iron. Inorganic Chemistry Frontiers, 2018, 5, 2657-2665.	6.0	66
18	Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: A macroscopic and spectroscopic study. Journal of Environmental Sciences, 2017, 53, 9-15.	6.1	31

CONGCONG DING

#	Article	IF	CITATIONS
19	Synergistic mechanism of U(VI) sequestration by magnetite-graphene oxide composites: Evidence from spectroscopic and theoretical calculation. Chemical Engineering Journal, 2017, 324, 113-121.	12.7	65
20	Kinetics and pH-dependent uranium bioprecipitation by Shewanella putrefaciens under aerobic conditions. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312, 531-541.	1.5	30
21	Fabrication of 3D Macroscopic Graphene Oxide Composites Supported by Montmorillonite for Efficient U(VI) Wastewater Purification. ACS Sustainable Chemistry and Engineering, 2017, 5, 5503-5511.	6.7	43
22	Uranium Binding on <i>Landoltia punctata</i> as a Result of Formation of Insoluble Nano-U (VI) and U (IV) Phosphate Minerals. ACS Sustainable Chemistry and Engineering, 2017, 5, 1494-1502.	6.7	29
23	Microscopic and Spectroscopic Insights into Uranium Phosphate Mineral Precipitated by <i>Bacillus Mucilaginosus</i> . ACS Earth and Space Chemistry, 2017, 1, 483-492.	2.7	38
24	Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. Journal of Hazardous Materials, 2016, 313, 253-261.	12.4	169
25	Direct Synthesis of Bacteria-Derived Carbonaceous Nanofibers as a Highly Efficient Material for Radionuclides Elimination. ACS Sustainable Chemistry and Engineering, 2016, 4, 4608-4616.	6.7	60
26	Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp. dwc-1 as investigated by FTIR, TEM and XPS. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 165-175.	1.5	16
27	Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers. Environmental Science & Technology, 2016, 50, 4459-4467.	10.0	398
28	Competitive sorption of As(V) and Cr(VI) on carbonaceous nanofibers. Chemical Engineering Journal, 2016, 293, 311-318.	12.7	166
29	Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. Journal of Environmental Sciences, 2016, 41, 162-171.	6.1	46
30	Fabrication of fungus/attapulgite composites and their removal of U(VI) from aqueous solution. Chemical Engineering Journal, 2015, 269, 1-8.	12.7	131
31	Effect of microbes on Ni(II) diffusion onto sepiolite. Journal of Molecular Liquids, 2015, 204, 170-175.	4.9	32
32	Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. Journal of Hazardous Materials, 2015, 295, 127-137.	12.4	227
33	Adsorption and Desorption of U(VI) on Functionalized Graphene Oxides: A Combined Experimental and Theoretical Study. Environmental Science & Technology, 2015, 49, 4255-4262.	10.0	473
34	Plasma synthesis of β-cyclodextrin/Al(OH)3 composites as adsorbents for removal of UO22+ from aqueous solutions. Journal of Molecular Liquids, 2015, 207, 224-230.	4.9	56
35	Mechanism of thorium biosorption by the cells of the soil fungal isolate Geotrichum sp. dwc-1. Radiochimica Acta, 2014, 102, 175-184.	1.2	16
36	The efficient enrichment of U(<scp>vi</scp>) by graphene oxide-supported chitosan. RSC Advances, 2014, 4, 61919-61926.	3.6	54

CONGCONG DING

#	Article	IF	CITATIONS
37	Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. Journal of Hazardous Materials, 2014, 280, 399-408.	12.4	339
38	Biosorption behavior and mechanism of thorium on Streptomyces sporoverrucosus dwc-3. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301, 237-245.	1.5	22
39	The sequestration of U(VI) on functional β-cyclodextrin-attapulgite nanorods. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 385-391.	1.5	33
40	Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution. Journal of Environmental Radioactivity, 2014, 134, 6-13.	1.7	30
41	Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. Journal of Environmental Radioactivity, 2014, 135, 6-12.	1.7	77