
Min Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784778/publications.pdf Version: 2024-02-01

Μίνι Ράνι

#	Article	IF	CITATIONS
1	Soft Actuators and Robotic Devices for Rehabilitation and Assistance. Advanced Intelligent Systems, 2022, 4, 2100140.	6.1	44
2	Hydraulic Pressure Ripple Energy Harvesting: Structures, Materials, and Applications. Advanced Energy Materials, 2022, 12, .	19.5	3
3	Peanoâ€Hydraulically Amplified Selfâ€Healing Electrostatic Actuators Based on a Novel Bilayer Polymer Shell for Enhanced Strain, Load, and Rotary Motion. Advanced Intelligent Systems, 2022, 4, .	6.1	4
4	Modeling and Analysis of the tilt behavior of the cylinder block in a high-speed axial piston pump. Mechanism and Machine Theory, 2022, 170, 104735.	4.5	10
5	Switching characteristics of a high-speed rotary valve for switched inertance hydraulic converters. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2022, 236, 1421-1441.	1.0	3
6	Hydraulic Pressure Ripple Energy Harvesting: Structures, Materials, and Applications (Adv. Energy) Tj ETQq0 0 0 r	gBT /Over 19.5	lock 10 Tf 50

7	Shell for Enhanced Strain, Load, and Rotary Motion. Advanced Intelligent Systems, 2022, 4, 2270022.	6.1	0
8	Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporosity. ACS Applied Polymer Materials, 2021, 3, 920-928.	4.4	8
9	Novel Integrated Active and Passive Control of Fluid-Borne Noise in Hydraulic Systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2021, , .	1.6	5
10	Piezoelectricâ€Driven Selfâ€Sensing Leafâ€Mimic Actuator Enabled by Integration of a Selfâ€Healing Dielectric Elastomer and a Piezoelectric Composite. Advanced Intelligent Systems, 2021, 3, 2000248.	6.1	7
11	Challenges and Opportunities of Selfâ€Healing Polymers and Devices for Extreme and Hostile Environments. Advanced Materials, 2021, 33, e2008052.	21.0	82
12	Piezoelectricâ€Driven Selfâ€Sensing Leafâ€Mimic Actuator Enabled by Integration of a Selfâ€Healing Dielectric Elastomer and a Piezoelectric Composite. Advanced Intelligent Systems, 2021, 3, 2170062.	6.1	1
13	Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. IScience, 2020, 23, 101682.	4.1	70
14	Soft Controllable Carbon Fibre-based Piezoresistive Self-Sensing Actuators. Actuators, 2020, 9, 79.	2.3	14
15	Research on wear prediction of piston/cylinder pair in axial piston pumps. Wear, 2020, 456-457, 203338.	3.1	25
16	A Review of Switched Inertance Hydraulic Converter Technology1. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2020, 142, .	1.6	15
17	Theoretical and Experimental Studies of a Digital Flow Booster Operating at High Pressures and Flow Rates. Processes, 2020, 8, 211.	2.8	5
18	Effects of splined shaft bending rigidity on cylinder tilt behaviour for high-speed electro-hydrostatic actuator pumps. Chinese Journal of Aeronautics, 2019, 32, 499-512.	5.3	17

2

Min Pan

#	Article	IF	CITATIONS
19	3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design. Energies, 2019, 12, 2462.	3.1	9
20	Advanced Artificial Muscle for Flexible Materialâ€Based Reconfigurable Soft Robots. Advanced Science, 2019, 6, 1901371.	11.2	71
21	An adhesive locomotion model for the rock-climbing fish, Beaufortia kweichowensis. Scientific Reports, 2019, 9, 16571.	3.3	13
22	Reconfigurable Soft Robots: Advanced Artificial Muscle for Flexible Materialâ€Based Reconfigurable Soft Robots (Adv. Sci. 21/2019). Advanced Science, 2019, 6, 1970128.	11.2	1
23	Carbon fibre based flexible piezoresistive composites to empower inherent sensing capabilities for soft actuators. Soft Matter, 2019, 15, 8001-8011.	2.7	36
24	Vacuumâ€Powered Soft Pneumatic Twisting Actuators to Empower New Capabilities for Soft Robots. Advanced Materials Technologies, 2019, 4, 1800429.	5.8	72
25	Energy efficiency improvement of heavy-load mobile hydraulic manipulator with electronically tunable operating modes. Energy Conversion and Management, 2019, 188, 447-461.	9.2	43
26	Experimental study of an insert and its influence on churning losses in a high-speed electro-hydrostatic actuator pump of an aircraft. Chinese Journal of Aeronautics, 2019, 32, 2028-2036.	5.3	15
27	Flexible Multifunctional Sensors for Wearable and Robotic Applications. Advanced Materials Technologies, 2019, 4, 1800626.	5.8	221
28	A Review of High-Speed Electro-Hydrostatic Actuator Pumps in Aerospace Applications: Challenges and Solutions. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	2.9	76
29	Digital switched hydraulics. Frontiers of Mechanical Engineering, 2018, 13, 225-231.	4.3	19
30	Churning losses analysis on the thermal-hydraulic model of a high-speed electro-hydrostatic actuator pump. International Journal of Heat and Mass Transfer, 2018, 127, 1023-1030.	4.8	21
31	Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University: Science A, 2018, 19, 417-430.	2.4	32
32	Adaptive Control of a Piezoelectric Valve for Fluid-Borne Noise Reduction in a Hydraulic Buck Converter. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2017, 139, .	1.6	7
33	Novel three-piston pump design for a slipper test rig. Applied Mathematical Modelling, 2017, 52, 65-81.	4.2	22
34	Liquid jet leaping from a free surface. Physics of Fluids, 2017, 29, 071702.	4.0	4
35	Effect of piston-slipper assembly mass difference on the cylinder block tilt in a high-speed electro-hydrostatic actuator pump of aircraft. International Journal of Precision Engineering and Manufacturing, 2017, 18, 995-1003.	2.2	13
36	Droplets passing through a soap film. Physics of Fluids, 2017, 29, .	4.0	16

Min Pan

#	Article	IF	CITATIONS
37	Experimental Study on the Influence of the Rotating Cylinder Block and Pistons on Churning Losses in Axial Piston Pumps. Energies, 2017, 10, 662.	3.1	30
38	Experimental Investigation of a Switched Inertance Hydraulic System With a High-Speed Rotary Valve. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2015, 137, .	1.6	36
39	Engineering research in fluid power: a review. Journal of Zhejiang University: Science A, 2015, 16, 427-442.	2.4	117
40	Theoretical and experimental studies of a switched inertance hydraulic system including switching transition dynamics, non-linearity and leakage. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2014, 228, 802-815.	1.0	17
41	Theoretical and experimental studies of a switched inertance hydraulic system. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2014, 228, 12-25.	1.0	30
42	Use of Pipeline Wave Propagation Model for Measuring Unsteady Flow Rate. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	1.5	14
43	Active control of fluid-bome noise in hydraulic systems using in-series and by-pass structures. , 2014, ,		5
44	An enhanced transmission line method for modelling laminar flow of liquid in pipelines. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2014, 228, 193-206.	1.0	15
45	Active control of pressure pulsation in a switched inertance hydraulic system. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2013, 227, 610-620.	1.0	12