Patricia Zambryski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmodesmata: Gatekeepers for Cell-to-Cell Transport of Developmental Signals in Plants. Annual Review of Cell and Developmental Biology, 2000, 16, 393-421.	9.4	208
2	Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17229-17234.	7.1	136
3	INCREASED SIZE EXCLUSION LIMIT2 Encodes a Putative DEVH Box RNA Helicase Involved in Plasmodesmata Function during Arabidopsis Embryogenesis. Plant Cell, 2007, 19, 1885-1897.	6.6	122
4	Redox States of Plastids and Mitochondria Differentially Regulate Intercellular Transport via Plasmodesmata Â. Plant Physiology, 2012, 158, 190-199.	4.8	104
5	TheAgrobacteriumDNA Transfer Complex. Critical Reviews in Plant Sciences, 1997, 16, 279-295.	5.7	101
6	Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. Journal of Cell Biology, 2004, 164, 165-168.	5.2	98
7	Leaf-to-shoot apex movement of symplastic tracer is restricted coincident with flowering in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1713-1717.	7.1	76
8	TOR dynamically regulates plant cell–cell transport. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5049-5058.	7.1	73
9	Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta, 1997, 203, 75-84.	3.2	59
10	Three knotted1-like homeobox genes in Arabidopsis. Plant Molecular Biology, 1996, 32, 673-683.	3.9	50
11	GROWTH POLE RING protein forms a 200-nm-diameter ring structure essential for polar growth and rod shape in <i>Agrobacterium tumefaciens</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10962-10967.	7.1	25
12	Plant Cell-Cell Transport via Plasmodesmata Is Regulated by Light and the Circadian Clock. Plant Physiology, 2019, 181, 1459-1467.	4.8	23
13	Investigating Plasmodesmata Genetics with Virus-Induced Gene Silencing and an Agrobacterium-Mediated GFP Movement Assay. Methods in Molecular Biology, 2015, 1217, 185-198.	0.9	19
14	Plasmodesmata. Current Biology, 2008, 18, R324-R325.	3.9	16
15	The Agrobacterium DNA Transfer Complex. Critical Reviews in Plant Sciences, 1997, 16, 279-296.	5.7	14
16	Segregation of four <i>Agrobacterium tumefaciens</i> replicons during polar growth: PopZ and PodJ control segregation of essential replicons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26366-26373.	7.1	9
17	Agrobacterium tumefaciens Growth Pole Ring Protein: C Terminus and Internal Apolipoprotein Homologous Domains Are Essential for Function and Subcellular Localization. MBio, 2021, 12, .	4.1	9
18	Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta, 1997, 203, 75-84.	3.2	8

#	Article	IF	CITATIONS
19	Fundamental discoveries and simple recombination between circular plasmid DNAs led to widespread use of Agrobacterium tumefaciens as a generalized vector for plant genetic engineering. International Journal of Developmental Biology, 2013, 57, 449-452.	0.6	7
20	Visualizing Stromule Frequency with Fluorescence Microscopy. Journal of Visualized Experiments, 2016, , .	0.3	2