List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784609/publications.pdf

Version: 2024-02-01

		9264	5394
222	27,758	74	164
papers	citations	h-index	g-index
235	235	235	27888
all docs	docs citations	times ranked	citing authors

HONG-RIN YAO

#	Article	IF	CITATIONS
1	Element doping-induced effects in Zn-doped CdTe quantum-dot system: Insights from an ultrafast dynamics perspective. Journal of Chemical Physics, 2022, 156, 034701.	3.0	1
2	Evaluating Lead Halide Perovskite Nanocrystals as a Spin Laser Gain Medium. Nano Letters, 2022, 22, 658-664.	9.1	13
3	A Prestressing Strategy Enabled Synergistic Energyâ€Dissipation in Impactâ€Resistant Nacreâ€Like Structures. Advanced Science, 2022, 9, e2104867.	11.2	16
4	Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature, 2022, 602, 606-611.	27.8	60
5	Unraveling the Effect of Surface Ligands on the Auger Process in an Inorganic Perovskite Quantum-Dot System. Journal of Physical Chemistry Letters, 2022, 13, 2943-2949.	4.6	2
6	Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes. Nano Letters, 2022, 22, 2461-2469.	9.1	32
7	Trace Doping of Multiple Elements Enables Stable Cycling of High Areal Capacity LiNi _{0.5} Mn _{1.5} O ₄ Cathode. Small, 2022, 18, e2106898.	10.0	9
8	Metal Halide Double Perovskite Fast Lithium Ion Conductors with a Unique Octahedral B-Site Vacancy Migration Mechanism. ACS Applied Energy Materials, 2022, 5, 4926-4933.	5.1	1
9	Lead-Free Solid-State Organic–Inorganic Halide Perovskite Electrolyte for Lithium-Ion Conduction. ACS Applied Materials & Interfaces, 2022, 14, 17479-17485.	8.0	5
10	State-selective exciton–plasmon interplay in a hybrid WSe ₂ /CuFeS ₂ nanosystem. Journal of Chemical Physics, 2022, 156, 144701.	3.0	1
11	Leadâ€Free Halide CsAg ₂ I ₃ with 1D Electronic Structure and High Stability for Ultraviolet Photodetector. Advanced Functional Materials, 2022, 32, .	14.9	18
12	α-BaF ₂ Nanoparticle Substrate-Enabled γ-CsPbI ₃ Heteroepitaxial Growth for Efficient and Bright Deep-Red Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 8162-8170.	13.7	19
13	Extremely fast-charging lithium ion battery enabled by dual-gradient structure design. Science Advances, 2022, 8, eabm6624.	10.3	50
14	Designing a Redox Heterojunction for Photocatalytic "Overall Nitrogen Fixation―under Mild Conditions. Advanced Materials, 2022, 34, e2200563.	21.0	71
15	A Unique Fe–N ₄ Coordination System Enabling Transformation of Oxygen into Superoxide for Photocatalytic Cī£¿H Activation with High Efficiency and Selectivity. Advanced Materials, 2022, 34, e2200612.	21.0	43
16	Phononic Fine-Tuning in a Prototype Two-Dimensional Hybrid Organic–Inorganic Perovskite System. Journal of Physical Chemistry Letters, 2022, 13, 5480-5487.	4.6	1
17	Biomimetic non-classical crystallization drives hierarchical structuring of efficient circularly polarized phosphors. Nature Communications, 2022, 13, .	12.8	21
18	A Red-Emitting Cu(I)–Halide Cluster Phosphor with Near-Unity Photoluminescence Efficiency for High-Power wLED Applications. Molecules, 2022, 27, 4441.	3.8	5

#	Article	IF	CITATIONS
19	Multiscale Designed Niobium Titanium Oxide Anode for Fast Charging Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2007419.	14.9	60
20	High Quality CsPbI _{3â^'} <i>_x</i> Br <i>_x</i> Thin Films Enabled by Synergetic Regulation of Fluorine Polymers and Amino Acid Molecules for Efficient Pure Red Light Emitting Diodes. Advanced Optical Materials, 2021, 9, 2001684.	7.3	19
21	Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO 2 Nanocrystals. Angewandte Chemie, 2021, 133, 6225-6234.	2.0	7
22	Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO ₂ Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 6160-6169.	13.8	52
23	A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Research, 2021, 14, 81-90.	10.4	84
24	Templating Synthesis of Metal–Organic Framework Nanofiber Aerogels and Their Derived Hollow Porous Carbon Nanofibers for Energy Storage and Conversion. Small, 2021, 17, e2004140.	10.0	32
25	Scallion-Inspired Graphene Scaffold Enabled High Rate Lithium Metal Battery. Nano Letters, 2021, 21, 2347-2355.	9.1	20
26	Bright and Near-Unity Polarized Light Emission Enabled by Highly Luminescent Cu ₂ I ₂ -Dimer Cluster-Based Hybrid Materials. Nano Letters, 2021, 21, 4115-4121.	9.1	13
27	Hydrogenated Oxide as Novel Quasi-metallic Cocatalyst for Efficient Visible-Light Driven Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2021, 125, 12672-12681.	3.1	5
28	Chiral Phosphine–Copper Iodide Hybrid Cluster Assemblies for Circularly Polarized Luminescence. Journal of the American Chemical Society, 2021, 143, 10860-10864.	13.7	87
29	Negative/Zero Thermal Quenching of Luminescence <i>via</i> Electronic Structural Transition in Copper–Iodide Cluster-Based Coordination Networks. Journal of Physical Chemistry Letters, 2021, 12, 8237-8245.	4.6	11
30	Lithium Fluoride in Electrolyte for Stable and Safe Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2102134.	21.0	91
31	Modulation of Metal Halide Structural Units for Light Emission. Accounts of Chemical Research, 2021, 54, 441-451.	15.6	61
32	Lithium Fluoride in Electrolyte for Stable and Safe Lithiumâ€Metal Batteries (Adv. Mater. 42/2021). Advanced Materials, 2021, 33, 2170331.	21.0	4
33	Spectrally Stable and Efficient Pure Red CsPbl ₃ Quantum Dot Light-Emitting Diodes Enabled by Sequential Ligand Post-Treatment Strategy. Nano Letters, 2021, 21, 8756-8763.	9.1	75
34	Ce-Doped W ₁₈ O ₄₉ Nanowires for Tuning N ₂ Activation toward Direct Nitrate Photosynthesis. Journal of Physical Chemistry Letters, 2021, 12, 11295-11302.	4.6	20
35	High Color Purity and Efficient Green Light-Emitting Diode Using Perovskite Nanocrystals with the Size Overly Exceeding Bohr Exciton Diameter. Journal of the American Chemical Society, 2021, 143, 19928-19937.	13.7	41
36	Increasing Photothermal Efficacy by Simultaneous Intra―and Intermolecular Fluorescence Quenching. Advanced Functional Materials, 2020, 30, 1908073.	14.9	49

#	Article	IF	CITATIONS
37	Potassium Bromide Surface Passivation on CsPbI _{3-x} Br _{<i>x</i>} Nanocrystals for Efficient and Stable Pure Red Perovskite Light-Emitting Diodes. Journal of the American Chemical Society, 2020, 142, 2956-2967.	13.7	236
38	Blow-Spinning Enabled Precise Doping and Coating for Improving High-Voltage Lithium Cobalt Oxide Cathode Performance. Nano Letters, 2020, 20, 677-685.	9.1	49
39	Suppressing Auger Recombination in Cesium Lead Bromide Perovskite Nanocrystal Film for Bright Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 9371-9378.	4.6	29
40	Hydrogenâ€Dopingâ€Induced Metalâ€Like Ultrahigh Freeâ€Carrier Concentration in Metalâ€Oxide Material for Giant and Tunable Plasmon Resonance. Advanced Materials, 2020, 32, e2004059.	21.0	57
41	Ultraefficient Singlet Oxygen Generation from Manganese-Doped Cesium Lead Chloride Perovskite Quantum Dots. ACS Nano, 2020, 14, 12596-12604.	14.6	20
42	Photoexcited Electron Dynamics of Nitrogen Fixation Catalyzed by Ruthenium Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2020, 11, 9579-9586.	4.6	32
43	Ketones as Molecular Coâ€catalysts for Boosting Excitonâ€Based Photocatalytic Molecular Oxygen Activation. Angewandte Chemie - International Edition, 2020, 59, 11093-11100.	13.8	43
44	A Promoted Charge Separation/Transfer System from Cu Single Atoms and C ₃ N ₄ Layers for Efficient Photocatalysis. Advanced Materials, 2020, 32, e2003082.	21.0	333
45	Improving Leadâ€Free Double Perovskite Cs ₂ NaBiCl ₆ Nanocrystal Optical Properties via Ion Doping. Advanced Optical Materials, 2020, 8, 1901919.	7.3	118
46	Highly Luminescent Copper Iodide Cluster Based Inks with Photoluminescence Quantum Efficiency Exceeding 98%. Journal of the American Chemical Society, 2020, 142, 3686-3690.	13.7	79
47	Amorphous TiO2 as a multifunctional interlayer for boosting the efficiency and stability of the CdS/cobaloxime hybrid system for photocatalytic hydrogen production. Nanoscale, 2020, 12, 11267-11279.	5.6	10
48	Ketones as Molecular Coâ€catalysts for Boosting Excitonâ€Based Photocatalytic Molecular Oxygen Activation. Angewandte Chemie, 2020, 132, 11186-11193.	2.0	9
49	Calcium-tributylphosphine oxide passivation enables the efficiency of pure-blue perovskite light-emitting diode up to 3.3%. Science Bulletin, 2020, 65, 1150-1153.	9.0	39
50	Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nature Communications, 2020, 11, 1761.	12.8	68
51	Impact of structural disorder on excitonic behaviors and dynamics in 2D organic-inorganic hybrid perovskites. Chinese Journal of Chemical Physics, 2020, 33, 561-568.	1.3	0
52	General Synthesis of Lead-Free Metal Halide Perovskite Colloidal Nanocrystals in 1-Dodecanol. Inorganic Chemistry, 2019, 58, 11807-11818.	4.0	34
53	Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie - International Edition, 2019, 58, 12175-12179.	13.8	310
54	A Nacreâ€Inspired Separator Coating for Impactâ€Tolerant Lithium Batteries. Advanced Materials, 2019, 31, e1905711.	21.0	71

#	Article	IF	CITATIONS
55	A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes. Chemical Science, 2019, 10, 9735-9739.	7.4	29
56	Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries. Nature Communications, 2019, 10, 2482.	12.8	96
57	Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries. Chemical Communications, 2019, 55, 7703-7706.	4.1	41
58	Metal–Organic Framework Coating Enhances the Performance of Cu ₂ 0 in Photoelectrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 10924-10929.	13.7	219
59	Sustainable Separators for Highâ€Performance Lithium Ion Batteries Enabled by Chemical Modifications. Advanced Functional Materials, 2019, 29, 1902023.	14.9	50
60	Rational design of functional materials guided by single particle chemiluminescence imaging. Chemical Science, 2019, 10, 5444-5451.	7.4	18
61	Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Composites Communications, 2019, 14, 7-14.	6.3	63
62	Efficient Exciton Dissociation in Heterojunction Interfaces Realizing Enhanced Photoresponsive Performance. Journal of Physical Chemistry Letters, 2019, 10, 2904-2910.	4.6	26
63	High Rate and Stable Solid-State Lithium Metal Batteries Enabled by Electronic and Ionic Mixed Conducting Network Interlayers. ACS Applied Materials & Interfaces, 2019, 11, 16578-16585.	8.0	17
64	Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Communications Chemistry, 2019, 2, .	4.5	57
65	Photodissociation dynamics of dichlorodifluoromethane (CF2Cl2) around 235â€nm using time-sliced velocity map imaging technology. Chinese Journal of Chemical Physics, 2019, 32, 406-410.	1.3	2
66	Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure. Materials and Design, 2019, 163, 107532.	7.0	43
67	Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H ₂ Generation. ACS Applied Materials & Interfaces, 2019, 11, 3971-3977.	8.0	46
68	Efficient and Color-Tunable Quasi-2D CsPbBr _{<i>x</i>} Cl _{3–<i>x</i>} Perovskite Blue Light-Emitting Diodes. ACS Photonics, 2019, 6, 667-676.	6.6	87
69	Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode. National Science Review, 2019, 6, 247-256.	9.5	57
70	Few-Nanometer-Sized α-CsPbI ₃ Quantum Dots Enabled by Strontium Substitution and Iodide Passivation for Efficient Red-Light Emitting Diodes. Journal of the American Chemical Society, 2019, 141, 2069-2079.	13.7	218
71	Experimental Identification of Ultrafast Reverse Hole Transfer at the Interface of the Photoexcited Methanol/Graphitic Carbon Nitride System. Angewandte Chemie - International Edition, 2018, 57, 5320-5324.	13.8	71
72	A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Grapheneâ€Based Fibers. Advanced Materials, 2018, 30, e1706435.	21.0	138

#	Article	IF	CITATIONS
73	Woodâ€Inspired Highâ€Performance Ultrathick Bulk Battery Electrodes. Advanced Materials, 2018, 30, e1706745.	21.0	205
74	MoS2 -Nanosheet-Decorated Carbon Nanofiber Composites Enable High-Performance Cathode Materials for Mg Batteries. ChemElectroChem, 2018, 5, 995-995.	3.4	1
75	Optically Switchable Photocatalysis in Ultrathin Black Phosphorus Nanosheets. Journal of the American Chemical Society, 2018, 140, 3474-3480.	13.7	210
76	Synthesis of Subâ€2â€nm Ironâ€Doped NiSe ₂ Nanowires and Their Surfaceâ€Confined Oxidation for Oxygen Evolution Catalysis. Angewandte Chemie, 2018, 130, 4084-4088.	2.0	33
77	Ce ³⁺ -Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr ₃ Nanocrystals Based Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 3626-3634.	13.7	442
78	Synthesis of Subâ€2 nm Ironâ€Doped NiSe ₂ Nanowires and Their Surfaceâ€Confined Oxidation for Oxygen Evolution Catalysis. Angewandte Chemie - International Edition, 2018, 57, 4020-4024.	13.8	133
79	MoS ₂ â€Nanosheetâ€Decorated Carbon Nanofiber Composites Enable Highâ€Performance Cathode Materials for Mg Batteries. ChemElectroChem, 2018, 5, 996-1001.	3.4	20
80	Potassium Ion Assisted Synthesis of Organic–Inorganic Hybrid Perovskite Nanobelts for Stable and Flexible Photodetectors. Advanced Optical Materials, 2018, 6, 1701029.	7.3	37
81	Metal Halide Perovskite Supercrystals: Gold–Bromide Complex Triggered Assembly of CsPbBr ₃ Nanocubes. Langmuir, 2018, 34, 595-602.	3.5	28
82	Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis. Advanced Materials, 2018, 30, 1705112.	21.0	599
83	Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation. Journal of the American Chemical Society, 2018, 140, 1760-1766.	13.7	651
84	Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li–S Batteries. Nano Letters, 2018, 18, 1035-1043.	9.1	285
85	Highly Luminescent Inks: Aggregationâ€Induced Emission of Copper–lodine Hybrid Clusters. Angewandte Chemie - International Edition, 2018, 57, 7106-7110.	13.8	91
86	High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg ₃ Bi ₂ Alloy Anode in Noncorrosive Electrolyte. ACS Nano, 2018, 12, 5856-5865.	14.6	87
87	Room temperature precipitated dual phase CsPbBr ₃ –CsPb ₂ Br ₅ nanocrystals for stable perovskite light emitting diodes. Nanoscale, 2018, 10, 19262-19271.	5.6	48
88	Location effect in a photocatalytic hybrid system of metal-organic framework interfaced with semiconductor nanoparticles. Chinese Journal of Chemical Physics, 2018, 31, 613-618.	1.3	12
89	High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector. ACS Applied Materials & amp; Interfaces, 2018, 10, 39441-39447.	8.0	11
90	Highly Luminescent Inks: Aggregationâ€Induced Emission of Copper–lodine Hybrid Clusters. Angewandte Chemie, 2018, 130, 7224-7228.	2.0	11

#	Article	IF	CITATIONS
91	Chemical regulation of metal halide perovskite nanomaterials for efficient light-emitting diodes. Science China Chemistry, 2018, 61, 1047-1061.	8.2	29
92	Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4613-4618.	7.1	285
93	Determining the Chargeâ€Transfer Direction in a p–n Heterojunction BiOCl/gâ€C ₃ N ₄ Photocatalyst by Ultrafast Spectroscopy. ChemPhotoChem, 2017, 1, 350-354.	3.0	18
94	Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn ₂ S ₄ Layers for Boosted Solar-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 7586-7594.	13.7	764
95	Great Disparity in Photoluminesence Quantum Yields of Colloidal CsPbBr ₃ Nanocrystals with Varied Shape: The Effect of Crystal Lattice Strain. Journal of Physical Chemistry Letters, 2017, 8, 3115-3121.	4.6	30
96	Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nature Nanotechnology, 2017, 12, 434-440.	31.5	610
97	Insights into the excitonic processes in polymeric photocatalysts. Chemical Science, 2017, 8, 4087-4092.	7.4	136
98	Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron–phonon coupling and confined optical field. Physical Chemistry Chemical Physics, 2017, 19, 9537-9544.	2.8	5
99	Bio-inspired clay nanosheets/polymer matrix/mineral nanofibers ternary composite films with optimal balance of strength and toughness. Science China Materials, 2017, 60, 909-917.	6.3	12
100	Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer. ACS Energy Letters, 2017, 2, 2454-2462.	17.4	23
101	Mass production of bulk artificial nacre with excellent mechanical properties. Nature Communications, 2017, 8, 287.	12.8	293
102	Largeâ€ 5 cale Syntheses of Zinc Sulfideâ‹(Diethylenetriamine) _{0.5} Hybrids as Precursors for Sulfur Nanocomposite Cathodes. Angewandte Chemie, 2017, 129, 11998-12002.	2.0	2
103	Large‣cale Syntheses of Zinc Sulfideâ‹(Diethylenetriamine) _{0.5} Hybrids as Precursors for Sulfur Nanocomposite Cathodes. Angewandte Chemie - International Edition, 2017, 56, 11836-11840.	13.8	24
104	Impact of Element Doping on Photoexcited Electron Dynamics in CdS Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 5680-5686.	4.6	20
105	Prawn Shell Derived Chitin Nanofiber Membranes as Advanced Sustainable Separators for Li/Na-Ion Batteries. Nano Letters, 2017, 17, 4894-4901.	9.1	96
106	Surface Plasmon Assisted Directional Rayleigh Scattering. Chinese Journal of Chemical Physics, 2017, 30, 135-138.	1.3	10
107	Photodissociation Dynamics of Carbon Dioxide Cation via the Vibrationally Mediated <i>Ã</i> 2Îu,1/2 State: A Time-Sliced Velocity-Mapped Ion Imaging Study. Chinese Journal of Chemical Physics, 2017, 30, 123-127.	1.3	6
108	Nacreâ€Like Ternary Hybrid Films with Enhanced Mechanical Properties by Interlocked Nanofiber Design. Advanced Materials Interfaces, 2016, 3, 1600296.	3.7	14

#	Article	IF	CITATIONS
109	Large‣cale Synthesis of Highly Luminescent Perovskiteâ€Related CsPb ₂ Br ₅ Nanoplatelets and Their Fast Anion Exchange. Angewandte Chemie - International Edition, 2016, 55, 8328-8332.	13.8	243
110	Oxyhydroxide Nanosheets with Highly Efficient Electron–Hole Pair Separation for Hydrogen Evolution. Angewandte Chemie, 2016, 128, 2177-2181.	2.0	26
111	Micrometerâ€Thick Graphene Oxide–Layered Double Hydroxide Nacreâ€Inspired Coatings and Their Properties. Small, 2016, 12, 745-755.	10.0	41
112	Singleâ€Atom Pt as Co atalyst for Enhanced Photocatalytic H ₂ Evolution. Advanced Materials, 2016, 28, 2427-2431.	21.0	1,156
113	Oxyhydroxide Nanosheets with Highly Efficient Electron–Hole Pair Separation for Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 2137-2141.	13.8	99
114	Large‣cale Synthesis of Highly Luminescent Perovskiteâ€Related CsPb ₂ Br ₅ Nanoplatelets and Their Fast Anion Exchange. Angewandte Chemie, 2016, 128, 8468-8472.	2.0	33
115	Enhanced Singlet Oxygen Generation in Oxidized Graphitic Carbon Nitride for Organic Synthesis. Advanced Materials, 2016, 28, 6940-6945.	21.0	397
116	Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie - International Edition, 2016, 55, 9389-9393.	13.8	513
117	Enhanced Photoexcited Carrier Separation in Oxygenâ€Doped ZnIn ₂ S ₄ Nanosheets for Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 6716-6720.	13.8	454
118	Probing the ultrafast dynamics in nanomaterial complex systems by femtosecond transient absorption spectroscopy. High Power Laser Science and Engineering, 2016, 4, .	4.6	26
119	A general chemical transformation route to two-dimensional mesoporous metal selenide nanomaterials by acidification of a ZnSe–amine lamellar hybrid at room temperature. Chemical Science, 2016, 7, 4276-4283.	7.4	13
120	Unraveling Surface Plasmon Decay in Core–Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis. Journal of the American Chemical Society, 2016, 138, 6822-6828.	13.7	136
121	Inâ€situ Integration of a Metallic 1Tâ€MoS ₂ /CdS Heterostructure as a Means to Promote Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution. ChemCatChem, 2016, 8, 2614-2619.	3.7	98
122	Titaniumâ€Carbideâ€Decorated Carbon Nanofibers as Hybrid Electrodes for High Performance Liâ€S Batteries. ChemNanoMat, 2016, 2, 937-941.	2.8	37
123	Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354, 107-110.	12.6	706
124	Retrieving the Rate of Reverse Intersystem Crossing from Ultrafast Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 3908-3912.	4.6	10
125	Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 2016, 7, 11203.	12.8	1,136
126	3D Porous Spongeâ€Inspired Electrode for Stretchable Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 3578-3583.	21.0	247

#	Article	IF	CITATIONS
127	Enhanced Photoexcited Carrier Separation in Oxygenâ€Doped ZnIn ₂ S ₄ Nanosheets for Hydrogen Evolution. Angewandte Chemie, 2016, 128, 6828-6832.	2.0	42
128	Insight into Electrocatalysts as Co-catalysts in Efficient Photocatalytic Hydrogen Evolution. ACS Catalysis, 2016, 6, 4253-4257.	11.2	120
129	Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Letters, 2016, 16, 4431-4437.	9.1	597
130	Lithium Batteries: Highly Nitridated Graphene-Li2S Cathodes with Stable Modulated Cycles (Adv.) Tj ETQq0 0 0 r	gB∏JQverl	ock 10 Tf 50
131	A New Cubic Phase for a NaYF ₄ Host Matrix Offering High Upconversion Luminescence Efficiency. Advanced Materials, 2015, 27, 5528-5533.	21.0	94
132	A Unique Ternary Semiconductor–(Semiconductor/Metal) Nanoâ€Architecture for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 11495-11500.	13.8	118
133	Atomicâ€Layerâ€Confined Doping for Atomicâ€Level Insights into Visibleâ€Light Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 9266-9270.	13.8	158
134	Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films. Small, 2015, 11, 4298-4302.	10.0	59
135	Highly Nitridated Graphene–Li ₂ S Cathodes with Stable Modulated Cycles. Advanced Energy Materials, 2015, 5, 1501369.	19.5	97
136	Rupturing C60Molecules into Graphene-Oxide-like Quantum Dots: Structure, Photoluminescence, and Catalytic Application. Small, 2015, 11, 5296-5304.	10.0	39
137	Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework. ACS Central Science, 2015, 1, 68-76.	11.3	207
138	Efficient and tunable fluorescence energy transfer via long-lived polymer excitons. Polymer Chemistry, 2015, 6, 1698-1702.	3.9	7
139	Durable Ag/AgCl nanowires assembled in a sponge for continuous water purification under sunlight. Materials Horizons, 2015, 2, 509-513.	12.2	31
140	Visible-Light Photoexcited Electron Dynamics of Scandium Endohedral Metallofullerenes: The Cage Symmetry and Substituent Effects. Journal of the American Chemical Society, 2015, 137, 8769-8774.	13.7	29
141	The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications, 2015, 6, 7436.	12.8	1,250
142	A Sulfur Cathode with Pomegranate‣ike Cluster Structure. Advanced Energy Materials, 2015, 5, 1500211.	19.5	122
143	Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes. Nano Letters, 2015, 15, 2910-2916.	9.1	495
144	Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties. Nano Letters, 2015, 15, 7394-7399.	9.1	61

#	Article	IF	CITATIONS
145	Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nature Communications, 2015, 6, 8647.	12.8	172
146	Remarkable enhancement of photovoltaic performance of ZnO/CdTe core–shell nanorod array solar cells through interface passivation with a TiO2 layer. RSC Advances, 2015, 5, 71883-71889.	3.6	10
147	Ion-Velocity Map Imaging Study of Photodissociation Dynamics of Acetaldehyde. Chinese Journal of Chemical Physics, 2014, 27, 249-255.	1.3	4
148	25th Anniversary Article: Artificial Carbonate Nanocrystals and Layered Structural Nanocomposites Inspired by Nacre: Synthesis, Fabrication and Applications. Advanced Materials, 2014, 26, 163-188.	21.0	226
149	Metal–Organic Frameworks: Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions (Adv. Mater. 28/2014). Advanced Materials, 2014, 26, 4907-4907.	21.0	3
150	Fluorescent switch for fast and selective detection of mercury (II) ions in vitro and in living cells and a simple device for its removal. Talanta, 2014, 125, 204-209.	5.5	16
151	Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nature Communications, 2014, 5, 3943.	12.8	369
152	Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy and Environmental Science, 2014, 7, 672.	30.8	277
153	Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 2014, 5, 5017.	12.8	530
154	Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer. Journal of Materials Chemistry A, 2014, 2, 5675-5681.	10.3	34
155	Semiconductors: A Unique Semiconductor-Metal-Graphene Stack Design to Harness Charge Flow for Photocatalysis (Adv. Mater. 32/2014). Advanced Materials, 2014, 26, 5578-5578.	21.0	4
156	Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotechnology, 2014, 9, 618-623.	31.5	1,535
157	Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy and Environmental Science, 2014, 7, 3381-3390.	30.8	476
158	Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode. Nano Letters, 2014, 14, 6016-6022.	9.1	656
159	High-capacity Li2S–graphene oxide composite cathodes with stable cycling performance. Chemical Science, 2014, 5, 1396.	7.4	109
160	Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nature Communications, 2014, 5, 4345.	12.8	411
161	Nanocomposites: 25th Anniversary Article: Artificial Carbonate Nanocrystals and Layered Structural Nanocomposites Inspired by Nacre: Synthesis, Fabrication and Applications (Adv. Mater. 1/2014). Advanced Materials, 2014, 26, 192-192.	21.0	3
162	Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chemical Science, 2013, 4, 3673.	7.4	412

#	Article	IF	CITATIONS
163	The Realistic Domain Structure of As-Synthesized Graphene Oxide from Ultrafast Spectroscopy. Journal of the American Chemical Society, 2013, 135, 12468-12474.	13.7	64
164	Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 2013, 13, 5534-5540.	9.1	601
165	A Flexible and Highly Pressureâ€Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design. Advanced Materials, 2013, 25, 6692-6698.	21.0	985
166	Bioinspired Crystallization of Continuous Calcium Phosphate Films on a Langmuir Monolayer of Zein Protein: Their Mechanical Performance, Hydrophilicity, and Biocompatibility. Crystal Growth and Design, 2013, 13, 3505-3513.	3.0	26
167	Chloride Anion Triggered Synthesis and Assembly of Gold Nanoparticleâ€Ultrathin Cadmium Selenide Nanowire Networks with Enhanced Photoconductivity. Particle and Particle Systems Characterization, 2013, 30, 97-101.	2.3	6
168	Nanowire Networks: Chloride Anion Triggered Synthesis and Assembly of Gold Nanoparticleâ€Ultrathin Cadmium Selenide Nanowire Networks with Enhanced Photoconductivity (Part. Part. Syst. Charact.) Tj ETQq0 0	0 r gß T /O	verloock 10 Tf
169	Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes. Nano Letters, 2013, 13, 3385-3390.	9.1	208
170	Intrinsic Peroxidase Catalytic Activity of Fe ₇ S ₈ Nanowires Templated from [Fe ₁₆ S ₂₀]/Diethylenetriamine Hybrid Nanowires. ChemPlusChem, 2013, 78, 723-727.	2.8	30
171	Pressure Sensors: A Flexible and Highly Pressure-Sensitive Graphene-Polyurethane Sponge Based on Fractured Microstructure Design (Adv. Mater. 46/2013). Advanced Materials, 2013, 25, 6691-6691.	21.0	17
172	How Graphene Oxide Quenches Fluorescence of Rhodamine 6G. Chinese Journal of Chemical Physics, 2013, 26, 252-258.	1.3	16
173	Helium Droplets: An Apparatus to Study Ultra Cold Chemistry. Chinese Journal of Chemical Physics, 2013, 26, 270-276.	1.3	1
174	Using Ionâ€velocity Map Imaging Technique to Study Photodissociation of 2â€Bromopentane. Chinese Journal of Chemical Physics, 2013, 26, 493-497.	1.3	4
175	Laserâ€induced Fluorescence Spectroscopy of NiO between 510 and 650 nm. Chinese Journal of Chemical Physics, 2013, 26, 512-518.	1.3	2
176	Laserâ€induced Fluorescence Spectroscopy of CoS: Identification of a New Excited State Arising from the Ground State. Chinese Journal of Chemical Physics, 2013, 26, 701-704.	1.3	3
177	Laserâ€induced Fluorescence Spectroscopy of NiS: Identification of a Lowâ€lying Electronic State. Chinese Journal of Chemical Physics, 2013, 26, 140-144.	1.3	1
178	Photodissociation of 2-Bromobutane at â^1⁄4265 nm by Ion-velocity Map Imaging Technique. Chinese Journal of Chemical Physics, 2012, 25, 373-378.	1.3	2
179	Laser-induced Fluorescence Spectroscopy of NiCl in 12900–15000 cmâ^'1. Chinese Journal of Chemical Physics, 2012, 25, 631-635.	1.3	2
180	Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Materials, 2012, 4, e19-e19.	7.9	217

ARTICLE IF CITATIONS Gold Nanoparticle Functionalized Artificial Nacre: Facile <i>in Situ</i> Growth of Nanoparticles on Montmorillonite Nanosheets, Self-Assembly, and Their Multiple Properties. ACS Nano, 2012, 6, 14.6 8250-8260. A designed multiscale hierarchical assembly process to produce artificial nacre-like freestanding 182 6.7 19 hybrid films with tunable optical properties. Journal of Materials Chemistry, 2012, 22, 13005. Mixedâ€PtPdâ€Shell PtPdCu Nanoparticle Nanotubes Templated from Copper Nanowires as Efficient and 164 Highly Durable Electrocatalysts. Advanced Energy Materials, 2012, 2, 1182-1187. InnenrÃ1/4cktitelbild: One-Pot Controlled Synthesis of Hexagonal-Prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S Heteronanostructures (Angew. Chem.) Tj ETQq0 020rgBT /Overlock 10 184 Inside Back Cover: One-Pot Controlled Synthesis of Hexagonal-Prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S Heteronanostructures (Angew. Chem. Int. Ed.) Tj ETQa1 1 0.084314 Ternary PtPdCu Electrocatalyst Formed through Surfaceâ€Atomic Redistribution against Leaching. 186 3.7 18 ChemĆatChem, 2012, 4, 1560-1563. An investigation of zirconium(iv)–glycine(CP-2) hybrid complex in bovine serum albumin protein matrix under varying conditions. Journal of Materials Chemistry, 2011, 21, 19005. Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional 188 38.1 341 materials. Chemical Society Reviews, 2011, 40, 3764. From (Cd2Se2)(pa) (pa = propylamine) hybrid precursors to various CdSe nanostructures: structural 3.3 14 evolution and optical properties. Dalton Transactions, 2011, 40, 3191. Laser-launched evanescent surface plasmon polariton field utilized as a direct coherent pumping 190 3.4 3 source to generate emitted nonlinear four-wave mixing radiation. Optics Express, 2011, 19, 4991. One-pot facile decoration of CdSe quantum dots on graphenenanosheets: novel graphene-CdSe 6.7 nanocomposites with tunable fluorescent properties. Journal of Materials Chemistry, 2011, 21, 562-566. Phaseâ€locking of two independent degenerate coherent antiâ€6tokes Raman scattering processes: concept, proposed allâ€optical implementation, and potential applications. Journal of Raman 192 2.51 Spectroscopy, 2011, 42, 1743-1746. Templating Synthesis of SnO₂ Nanotubes Loaded with Ag₂O Nanoparticles and 14.9 130 Their Enhanced Gas Sensing Properties. Advanced Functional Materials, 2011, 21, 2049-2056. Macroscale Elastomeric Conductors Generated from Hydrothermally Synthesized Metalâ€Polymer 194 21.0 52 Hybrid Nanocable Sponges. Advanced Materials, 2011, 23, 3643-3647. Photodissociation of 2-Bromobutane by Ion-velocity Map Imaging Technique. Chinese Journal of 1.3 Chemical Physics, 2011, 24, 647-652. Cavity Ringdown Spectroscopy of PH2 Radical in 465–555 nm. Chinese Journal of Chemical Physics, 2011, 196 1.3 1 24, 8-15. Time-sliced Velocity Map Imaging Study on Photodissociation of Neopentyl Bromide 1.3 and<i>Tert</i>-pentyl Bromide at 234 nm. Chinese Journal of Chemical Physics, 2011, 24, 631-634. Experimental Determination of the Vibrational Constants of FeS(<i>X</i>5Î") by Dispersed Fluorescence 198 1.3 7

HONG-BIN YAO

Spectroscopy. Chinese Journal of Chemical Physics, 2011, 24, 1-3.

#	Article	IF	CITATIONS
199	Hydrazine-cadmium tellurite hybrid microcrystals: An efficient precursor to porous cadmium telluride and tellurium architectures through its thermal decomposition. Nano Research, 2010, 3, 81-91.	10.4	9
200	Biologically Inspired, Strong, Transparent, and Functional Layered Organic–Inorganic Hybrid Films. Angewandte Chemie - International Edition, 2010, 49, 2140-2145.	13.8	171
201	Artificial Nacreâ€like Bionanocomposite Films from the Selfâ€Assembly of Chitosan–Montmorillonite Hybrid Building Blocks. Angewandte Chemie - International Edition, 2010, 49, 10127-10131.	13.8	300
202	B-X and C-X Band Systems of CuCl Revisited: Laser-induced Fluorescence Study in 465–490 nm. Chinese Journal of Chemical Physics, 2010, 23, 249-251.	1.3	0
203	Laser-induced Fluorescence and Dispersed Fluorescence Spectroscopy of NiB: Identification of a New 2Î State in 19000–22100 cmâ"1. Chinese Journal of Chemical Physics, 2010, 23, 626-629.	1.3	5
204	Laser-induced Fluorescence Spectrum of CoS Between 15200 and 19000 cmâ^'1. Chinese Journal of Chemical Physics, 2010, 23, 262-268.	1.3	4
205	Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal and photocatalytic reduction. Journal of Materials Chemistry, 2010, 20, 5190.	6.7	94
206	Small organic molecule templating synthesis of organic–inorganic hybrid materials: their nanostructures and properties. Nanoscale, 2010, 2, 323-334.	5.6	93
207	1,3-Diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid stabilized amorphous calcium carbonate: nucleation, transformation and crystal growth. CrystEngComm, 2010, 12, 234-241.	2.6	95
208	Laser-induced atomic fragment fluorescence spectroscopy: A facile technique for molecular spectroscopy of spin-forbidden states. Review of Scientific Instruments, 2009, 80, 033111.	1.3	1
209	Laser-induced Fluorescence Excitation Spectrum of NiS in 1550017200 cm1. Chinese Journal of Chemical Physics, 2009, 22, 668-672.	1.3	4
210	New Blueâ€Lightâ€Emitting Ultralong [Cd(L)(TeO ₃)] (L=polyamine) Organic–Inorganic Hybrid Nanofibre Bundles: Their Thermal Stability and Acidic Sensitivity. Chemistry - A European Journal, 2009, 15, 7611-7618.	3.3	11
211	Resonance-enhanced photon excitation spectroscopy of the even-parity autoionizing Rydberg states of Kr. Science in China Series B: Chemistry, 2009, 52, 161-168.	0.8	4
212	Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties. CrystEngComm, 2009, 11, 1383.	2.6	140
213	Lamellar transition-metal molybdate–CTA mesostructured composites (metal = Ni, Co): one-pot synthesis and application in treatment of acid fuchsine. Chemical Communications, 2009, , 6732.	4.1	7
214	In situ accurate determination of the zero time delay between two independent ultrashort laser pulses by observing the oscillation of an atomic excited wave packet. Optics Letters, 2008, 33, 1893.	3.3	2
215	On the photofragmentation of SF2+: Experimental evidence for a predissociation channel. Journal of Chemical Physics, 2008, 129, 166101.	3.0	0
216	Observation of the 5p Rydberg states of sulfur difluoride radical by resonance-enhanced multiphoton ionization spectroscopy. Journal of Chemical Physics, 2008, 128, 144306.	3.0	2

#	Article	IF	CITATIONS
217	Resonance-Enhanced Photon Excitation Spectroscopy of the Even-Parity Autoionizing Rydberg States of Xe. Chinese Journal of Chemical Physics, 2008, 21, 401-406.	1.3	2
218	Observation of above-threshold dissociation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mmultiscripts> <mml:mi mathvariant="normal">Na <mml:mn>2</mml:mn> <mml:none></mml:none> <mml:none /> <mml:mo>+</mml:mo> </mml:none </mml:mi </mml:mmultiscripts> in intense laser fields. Physical Review A,</mml:math 	2.5	5
219	2008, 78, . Novel Fluorescein Hierarchical Structures Fabricated by Recrystallization under Control of Polyelectrolytes. Crystal Growth and Design, 2007, 7, 2419-2428.	3.0	9
220	Kinetic studies on state-state coupling and collisional quenching of excited sulfur dioxide. International Journal of Chemical Kinetics, 1998, 30, 831-837.	1.6	2
221	Microemulsionâ€Induced Stable CsPbBr 3 /PbWO 4 Nanocrystals for Lightâ€Emitting Diodes. Advanced Photonics Research, 0, , 2100250.	3.6	1
222	Soluble Hybrid Ionic Semiconductor and Its Photovoltaic Effect in Solution. ACS Applied Materials & amp; Interfaces, 0, , .	8.0	2