Sumit Sahni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784543/publications.pdf

Version: 2024-02-01

114418 136885 7,505 64 32 63 h-index citations g-index papers 65 65 65 17354 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	P-glycoprotein Mediates Drug Resistance via a Novel Mechanism Involving Lysosomal Sequestration. Journal of Biological Chemistry, 2013, 288, 31761-31771.	1.6	164
3	Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 770-784.	1.9	148
4	Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance. Free Radical Biology and Medicine, 2011, 51, 1558-1566.	1.3	127
5	The renaissance of polypharmacology in the development of anti-cancer therapeutics: Inhibition of the "Triad of Death―in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacological Research, 2015, 100, 255-260.	3.1	127
6	Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis, 2013, 34, 1943-1954.	1.3	117
7	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	1.9	111
8	Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics, 2016, 8, 874-886.	1.0	105
9	Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation. Nutrients, 2015, 7, 2274-2296.	1.7	103
10	Di-2-pyridylketone 4,4-Dimethyl-3-thiosemicarbazone (Dp44mT) Overcomes Multidrug Resistance by a Novel Mechanism Involving the Hijacking of Lysosomal P-Glycoprotein (Pgp). Journal of Biological Chemistry, 2015, 290, 9588-9603.	1.6	103
11	The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-26.	1.9	92
12	Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 1-19.	3.3	88
13	The Metastasis Suppressor, N-myc Downstream-regulated Gene 1 (NDRG1), Inhibits Stress-induced Autophagy in Cancer Cells. Journal of Biological Chemistry, 2014, 289, 9692-9709.	1.6	83
14	Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation. Molecular Pharmacology, 2015, 87, 363-377.	1.0	74
15	The role of NDRG1 in the pathology and potential treatment of human cancers. Journal of Clinical Pathology, 2013, 66, 911-917.	1.0	72
16	Nitric Oxide Suppresses Tumor Cell Migration through N-Myc Downstream-regulated Gene-1 (NDRG1) Expression. Journal of Biological Chemistry, 2011, 286, 41413-41424.	1.6	69
17	The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways. Journal of Biological Chemistry, 2016, 291, 1029-1052.	1.6	65
18	The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget, 2015, 6, 8851-8874.	0.8	64

#	Article	IF	Citations
19	A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 139, 612-632.	2.6	64
20	Gene of the month: <i>BECN1</i> . Journal of Clinical Pathology, 2014, 67, 656-660.	1.0	57
21	AMP kinase (<i>PRKAA1</i>). Journal of Clinical Pathology, 2014, 67, 758-763.	1.0	51
22	Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. Journal of Biological Chemistry, 2017, 292, 12772-12782.	1.6	48
23	Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling. Molecular Pharmacology, 2016, 89, 521-540.	1.0	45
24	Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clinical Science, 2016, 130, 853-870.	1.8	45
25	The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget, 2015, 6, 35522-35541.	0.8	43
26	Novel Mechanism of Cytotoxicity for the Selective Selenosemicarbazone, 2-Acetylpyridine 4,4-Dimethyl-3-selenosemicarbazone (Ap44mSe): Lysosomal Membrane Permeabilization. Journal of Medicinal Chemistry, 2016, 59, 294-312.	2.9	39
27	Novel Thiosemicarbazones Regulate the Signal Transducer and Activator of Transcription 3 (STAT3) Pathway: Inhibition of Constitutive and Interleukin 6–Induced Activation by Iron Depletion. Molecular Pharmacology, 2015, 87, 543-560.	1.0	37
28	Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase. Biochemical Pharmacology, 2016, 109, 27-47.	2.0	36
29	The Anticancer Agent, Di-2-Pyridylketone 4,4-Dimethyl-3-Thiosemicarbazone (Dp44mT), Up-Regulates the AMPK-Dependent Energy Homeostasis Pathway in Cancer Cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2916-2933.	1.9	36
30	Nitric oxide reduces oxidative stress in cancer cells by forming dinitrosyliron complexes. Nitric Oxide - Biology and Chemistry, 2018, 76, 37-44.	1.2	36
31	Identification of differential phosphorylation and sub-cellular localization of the metastasis suppressor, NDRG1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2644-2663.	1.8	36
32	Tumor stressors induce two mechanisms of intracellular P-glycoprotein–mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. Journal of Biological Chemistry, 2018, 293, 3562-3587.	1.6	36
33	Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1665-1681.	1.9	34
34	Small Molecule KRAS Inhibitors: The Future for Targeted Pancreatic Cancer Therapy?. Cancers, 2020, 12, 1341.	1.7	34
35	A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous Nitric Oxide Cytotoxicity. Journal of Biological Chemistry, 2016, 291, 27042-27061.	1.6	32
36	Potentiating the cellular targeting and anti-tumor activity of Dp44mT <i>via</i> binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget, 2015, 6, 10374-10398.	0.8	28

#	Article	IF	CITATIONS
37	The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacological Research, 2017, 119, 118-127.	3.1	24
38	Breaking the cycle: Targeting of NDRG1 to inhibit biâ€directional oncogenic crossâ€ŧalk between pancreatic cancer and stroma. FASEB Journal, 2021, 35, e21347.	0.2	23
39	Identification of Novel Biomarkers in Pancreatic Tumor Tissue to Predict Response to Neoadjuvant Chemotherapy. Frontiers in Oncology, 2020, 10, 237.	1.3	22
40	Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188418.	3.3	21
41	Autophagy: A promising target for triple negative breast cancers. Pharmacological Research, 2022, 175, 106006.	3.1	20
42	Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation ofÂtheÂmetastasis suppressor NDRG1. Journal of Biological Chemistry, 2022, 298, 101608.	1.6	20
43	Cellular Uptake of the Antitumor Agent Dp44mT Occurs via a Carrier/Receptor-Mediated Mechanism. Molecular Pharmacology, 2013, 84, 911-924.	1.0	19
44	Exploiting Cancer Metal Metabolism using Anti-Cancer Metal-Binding Agents. Current Medicinal Chemistry, 2019, 26, 302-322.	1.2	19
45	Making a case for albumin – a highly promising drug-delivery system. Future Medicinal Chemistry, 2015, 7, 553-556.	1.1	17
46	IRON METABOLISM AND AUTOPHAGY: A POORLY EXPLORED RELATIONSHIP THAT HAS IMPORTANT CONSEQUENCES FOR HEALTH AND DISEASE. Nagoya Journal of Medical Science, 2015, 77, 1-6.	0.6	17
47	PSMD11, PTPRM and PTPRB as novel biomarkers of pancreatic cancer progression. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129682.	1.1	15
48	A Critical Assessment of Postneoadjuvant Therapy Pancreatic Cancer Regression Grading Schemes With a Proposal for a Novel Approach. American Journal of Surgical Pathology, 2021, 45, 394-404.	2.1	15
49	A unique urinary metabolomic signature for the detection of pancreatic ductal adenocarcinoma. International Journal of Cancer, 2021, 148, 1508-1518.	2.3	14
50	NDRG1 suppresses basal and hypoxia-induced autophagy at both the initiation and degradation stages and sensitizes pancreatic cancer cells to lysosomal membrane permeabilization. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129625.	1.1	13
51	Role of ABCB1 in mediating chemoresistance of triple-negative breast cancers. Bioscience Reports, 2021, 41, .	1.1	13
52	Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1361-1378.	1.8	12
53	Data independent acquisition of plasma biomarkers of response to neoadjuvant chemotherapy in pancreatic ductal adenocarcinoma. Journal of Proteomics, 2021, 231, 103998.	1.2	10
54	Copper that cancer with lysosomal love!. Aging, 2016, 8, 210-211.	1.4	10

#	Article	IF	CITATIONS
55	NDRG1 as a molecular target to inhibit the epithelial–mesenchymal transition: the case for developing inhibitors of metastasis. Future Medicinal Chemistry, 2014, 6, 1241-1244.	1.1	9
56	Serum Biomarker Panel for Diagnosis and Prognosis of Pancreatic Ductal Adenocarcinomas. Frontiers in Oncology, 2021, 11, 708963.	1.3	9
57	Urinary metabolite prognostic biomarker panel for pancreatic ductal adenocarcinomas. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129966.	1.1	8
58	In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites. PLoS ONE, 2015, 10, e0139929.	1.1	7
59	Tissue biomarker panel as a surrogate marker for squamous subtype of pancreatic cancer. European Journal of Surgical Oncology, 2020, 46, 1539-1542.	0.5	6
60	Optimal Upfront Treatment in Surgically Resectable Pancreatic Cancer Candidates: A High-Volume Center Retrospective Analysis. Journal of Clinical Medicine, 2021, 10, 2700.	1.0	5
61	Letter to the Editor: "Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques― International Journal of Molecular Sciences, 2016, 17, 1916.	1.8	3
62	Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers, 2021, 13, 6152.	1.7	3
63	The use of iron chelators in biocidal compositions: evaluation of patent, WO2014059417A1. Expert Opinion on Therapeutic Patents, 2015, 25, 367-372.	2.4	1
64	Targeting autophagy in antitumor agent design: furthering the â€~lysosomal love' strategy. Future Medicinal Chemistry, 2016, 8, 727-729.	1.1	O