List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784511/publications.pdf Version: 2024-02-01

274 papers	13,541 citations	26610 56 h-index	28275 105 g-index
285	285	285	12361
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Structural MRI Study of Human Brain Development from Birth to 2 Years. Journal of Neuroscience, 2008, 28, 12176-12182.	1.7	926
2	Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 2015, 108, 214-224.	2.1	662
3	Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6790-6795.	3.3	480
4	Infant Brain Atlases from Neonates to 1- and 2-Year-Olds. PLoS ONE, 2011, 6, e18746.	1.1	458
5	Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain. Journal of Neuroscience, 2007, 27, 1255-1260.	1.7	389
6	Longitudinal Development of Cortical and Subcortical Gray Matter from Birth to 2 Years. Cerebral Cortex, 2012, 22, 2478-2485.	1.6	377
7	Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Transactions on Medical Imaging, 2003, 22, 1163-1171.	5.4	339
8	3D conditional generative adversarial networks for high-quality PET image estimation at low dose. NeuroImage, 2018, 174, 550-562.	2.1	298
9	Functional Network Development During the First Year: Relative Sequence and Socioeconomic Correlations. Cerebral Cortex, 2015, 25, 2919-2928.	1.6	275
10	Functional Connectivity of the Infant Human Brain. Neuroscientist, 2017, 23, 169-184.	2.6	265
11	Development of human brain cortical network architecture during infancy. Brain Structure and Function, 2015, 220, 1173-1186.	1.2	240
12	Vessel Tortuosity and Brain Tumor Malignancy. Academic Radiology, 2005, 12, 1232-1240.	1.3	239
13	The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development. Neurolmage, 2019, 185, 891-905.	2.1	234
14	Temporal and Spatial Evolution of Brain Network Topology during the First Two Years of Life. PLoS ONE, 2011, 6, e25278.	1.1	224
15	LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. NeuroImage, 2015, 108, 160-172.	2.1	208
16	In vivo measurement of blood oxygen saturation using magnetic resonance imaging: A direct validation of the blood oxygen level-dependent concept in functional brain imaging. Human Brain Mapping, 1997, 5, 341-346.	1.9	198
17	Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1225-1236.	2.4	198
18	Functional Connectivity MR Imaging Reveals Cortical Functional Connectivity in the Developing Brain. American Journal of Neuroradiology, 2008, 29, 1883-1889.	1.2	194

#	Article	IF	CITATIONS
19	Development of Thalamocortical Connectivity during Infancy and Its Cognitive Correlations. Journal of Neuroscience, 2014, 34, 9067-9075.	1.7	180
20	Neonatal brain image segmentation in longitudinal MRI studies. NeuroImage, 2010, 49, 391-400.	2.1	177
21	Segmentation of neonatal brain MR images using patch-driven level sets. Neurolmage, 2014, 84, 141-158.	2.1	161
22	The Synchronization within and Interaction between the Default and Dorsal Attention Networks in Early Infancy. Cerebral Cortex, 2013, 23, 594-603.	1.6	147
23	Accurate determination of spin-density andT1 in the presence of RF-field inhomogeneities and flip-angle miscalibration. Magnetic Resonance in Medicine, 1998, 40, 592-602.	1.9	136
24	Benchmark on Automatic Six-Month-Old Infant Brain Segmentation Algorithms: The iSeg-2017 Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 2219-2230.	5.4	136
25	Computational neuroanatomy of baby brains: A review. NeuroImage, 2019, 185, 906-925.	2.1	125
26	Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: Effects of magnetic field variation. Magnetic Resonance in Medicine, 2002, 47, 958-966.	1.9	121
27	Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach. Magnetic Resonance in Medicine, 2003, 50, 708-716.	1.9	116
28	Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. NeuroImage, 2014, 90, 266-279.	2.1	113
29	Construction of 4D high-definition cortical surface atlases of infants: Methods and applications. Medical Image Analysis, 2015, 25, 22-36.	7.0	112
30	Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: A PET and MR study. Journal of Magnetic Resonance Imaging, 2001, 14, 659-667.	1.9	107
31	Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. NeuroImage, 2014, 100, 206-218.	2.1	107
32	Intersubject Variability of and Genetic Effects on the Brain's Functional Connectivity during Infancy. Journal of Neuroscience, 2014, 34, 11288-11296.	1.7	105
33	Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Annals of Neurology, 2003, 53, 227-232.	2.8	100
34	In vivo validation of the bold mechanism: A review of signal changes in gradient echo functional MRI in the presence of flow. International Journal of Imaging Systems and Technology, 1995, 6, 153-163.	2.7	99
35	Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. Neurolmage, 2014, 89, 152-164.	2.1	96
36	The potential of infant fMRI research and the study of early life stress as a promising exemplar. Developmental Cognitive Neuroscience, 2015, 12, 12-39.	1.9	94

#	Article	IF	CITATIONS
37	Hemodynamic and permeability changes in posterior reversible encephalopathy syndrome measured by dynamic susceptibility perfusion-weighted MR imaging. American Journal of Neuroradiology, 2005, 26, 825-30.	1.2	92
38	Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images. Medical Image Analysis, 2018, 46, 106-117.	7.0	91
39	Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts. NeuroImage, 2019, 185, 664-684.	2.1	91
40	Associations between white matter microstructure and infants' working memory. NeuroImage, 2013, 64, 156-166.	2.1	90
41	Prenatal and Neonatal Brain Structure and White Matter Maturation in Children at High Risk for Schizophrenia. American Journal of Psychiatry, 2010, 167, 1083-1091.	4.0	88
42	Developmental topography of cortical thickness during infancy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15855-15860.	3.3	82
43	Longitudinal Study of the Emerging Functional Connectivity Asymmetry of Primary Language Regions during Infancy. Journal of Neuroscience, 2016, 36, 10883-10892.	1.7	81
44	Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging. Magnetic Resonance in Medicine, 2002, 48, 583-588.	1.9	79
45	Consistent Anterior–Posterior Segregation of the Insula During the First 2 Years of Life. Cerebral Cortex, 2015, 25, 1176-1187.	1.6	77
46	Deep Learning for Fast and Spatially Constrained Tissue Quantification From Highly Accelerated Data in Magnetic Resonance Fingerprinting. IEEE Transactions on Medical Imaging, 2019, 38, 2364-2374.	5.4	77
47	Temporal Relationship Between Apparent Diffusion Coefficient and Absolute Measurements of Cerebral Blood Flow in Acute Stroke Patients. Stroke, 2003, 34, 64-70.	1.0	73
48	Functional MRI in human somatosensory cortex activated by touching textured surfaces. Journal of Magnetic Resonance Imaging, 1996, 6, 565-572.	1.9	72
49	Prenatal Drug Exposure Affects Neonatal Brain Functional Connectivity. Journal of Neuroscience, 2015, 35, 5860-5869.	1.7	72
50	First-year development of modules and hubs in infant brain functional networks. NeuroImage, 2019, 185, 222-235.	2.1	70
51	Prenatal Mild Ventriculomegaly Predicts Abnormal Development of the Neonatal Brain. Biological Psychiatry, 2008, 64, 1069-1076.	0.7	69
52	Contrast-enhanced magnetic resonance angiography of carotid arterial wall in pigs. Journal of Magnetic Resonance Imaging, 1997, 7, 183-190.	1.9	62
53	Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Physics in Medicine and Biology, 2016, 61, 791-812.	1.6	62
54	Volume-Based Analysis of 6-Month-Old Infant Brain MRI for Autism Biomarker Identification and Early Diagnosis. Lecture Notes in Computer Science, 2018, 11072, 411-419.	1.0	61

#	Article	IF	CITATIONS
55	Quantitative measurements of cerebral metabolic rate of oxygen utilization using MRI: a volunteer study. NMR in Biomedicine, 2001, 14, 441-447.	1.6	60
56	Evaluation of MR-Derived Cerebral Oxygen Metabolic Index in Experimental Hyperoxic Hypercapnia, Hypoxia, and Ischemia. Stroke, 2009, 40, 2165-2172.	1.0	59
57	Quantitative measurements of regional cerebral blood volume using MRI in rats: Effects of arterial carbon dioxide tension and mannitol. Magnetic Resonance in Medicine, 1997, 38, 420-428.	1.9	58
58	Associations between Tumor Vascularity, Vascular Endothelial Growth Factor Expression and PET/MRI Radiomic Signatures in Primary Clear-Cell–Renal-Cell-Carcinoma: Proof-of-Concept Study. Scientific Reports, 2017, 7, 43356.	1.6	58
59	Functional Brain Parcellations of the Infant Brain and the Associated Developmental Trends. Cerebral Cortex, 2018, 28, 1358-1368.	1.6	55
60	Investigating magnetic susceptibility of human knee joint at 7 Tesla. Magnetic Resonance in Medicine, 2017, 78, 1933-1943.	1.9	54
61	MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life. NeuroImage, 2019, 186, 782-793.	2.1	54
62	3 Tesla magnetic resonance imaging of the brain in newborns. Psychiatry Research - Neuroimaging, 2004, 132, 81-85.	0.9	53
63	Visualization of perivascular spaces in the human brain at 7 T: sequence optimization and morphology characterization. Neurolmage, 2016, 125, 895-902.	2.1	53
64	Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge. IEEE Transactions on Medical Imaging, 2021, 40, 1363-1376.	5.4	53
65	Cortical thickness and surface area in neonates at high risk for schizophrenia. Brain Structure and Function, 2016, 221, 447-461.	1.2	52
66	Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life. Human Brain Mapping, 2014, 35, 3726-3737.	1.9	51
67	Experimental hypoxemic hypoxia: Changes in R2* of brain parenchyma accurately reflect the combined effects of changes in arterial and cerebral venous oxygen saturation. Magnetic Resonance in Medicine, 1998, 39, 474-481.	1.9	50
68	Regional cerebral blood volume: A comparison of the dynamic imaging and the steady state methods. Journal of Magnetic Resonance Imaging, 1999, 9, 44-52.	1.9	50
69	Improving high-resolution MR bold venographic imaging using a T1 reducing contrast agent. Journal of Magnetic Resonance Imaging, 1999, 10, 118-123.	1.9	50
70	Defining the Ischemic Penumbra Using Magnetic Resonance Oxygen Metabolic Index. Stroke, 2015, 46, 982-988.	1.0	49
71	Prediction of standardâ€dose brain PET image by using MRI and lowâ€dose brain [¹⁸ F]FDG PET images. Medical Physics, 2015, 42, 5301-5309.	1.6	49
72	Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs. NeuroImage: Clinical, 2016, 12, 673-680.	1.4	49

#	Article	IF	CITATIONS
73	High-resolution 3D MR Fingerprinting using parallel imaging and deep learning. NeuroImage, 2020, 206, 116329.	2.1	49
74	Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1391-1417.	2.4	48
75	Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscular Disorders, 2014, 24, 178-191.	0.3	46
76	Network-Level Connectivity Dynamics of Movie Watching in 6-Year-Old Children. Frontiers in Human Neuroscience, 2015, 9, 631.	1.0	45
77	Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure: the Journal of the British Epilepsy Association, 2015, 31, 1-4.	0.9	45
78	Practical consideration for 3T imaging. Magnetic Resonance Imaging Clinics of North America, 2003, 11, 615-639.	0.6	44
79	The Potential Roles of ^{18} F-FDG-PET in Management of Acute Stroke Patients. BioMed Research International, 2013, 2013, 1-14.	0.9	44
80	Quantitative Magnetic Resonance Imaging in Experimental Hypercapnia: Improvement in the Relation between Changes in Brain R2* and the Oxygen Saturation of Venous Blood after Correction for Changes in Cerebral Blood Volume. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 853-862.	2.4	43
81	A review on neuroimaging studies of genetic and environmental influences on early brain development. NeuroImage, 2019, 185, 802-812.	2.1	42
82	Abnormal Vessel Tortuosity as a Marker of Treatment Response of Malignant Gliomas: Preliminary Report. Technology in Cancer Research and Treatment, 2004, 3, 577-584.	0.8	39
83	Harmonization of Infant Cortical Thickness Using Surface-to-Surface Cycle-Consistent Adversarial Networks. Lecture Notes in Computer Science, 2019, 11767, 475-483.	1.0	39
84	Prenatal isolated mild ventriculomegaly is associated with persistent ventricle enlargement at ages 1 and 2. Early Human Development, 2012, 88, 691-698.	0.8	38
85	Segmentation of perivascular spaces in 7 T MR image using auto-context model with orientation-normalized features. NeuroImage, 2016, 134, 223-235.	2.1	38
86	Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation. Frontiers in Neuroinformatics, 2019, 13, 30.	1.3	38
87	Magnetic resonance imaging of the brain with gadopentetate dimeglumine-DTPA: Comparison of T1-weighted spin-echo and 3D gradient-echo sequences. Journal of Magnetic Resonance Imaging, 1996, 6, 415-424.	1.9	37
88	Blood Vessel Morphologic Changes Depicted with MR Angiography during Treatment of Brain Metastases: A Feasibility Study. Radiology, 2007, 245, 824-830.	3.6	37
89	Oxygen metabolism in acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1481-1499.	2.4	37
90	Spherical U-Net on Cortical Surfaces: Methods and Applications. Lecture Notes in Computer Science, 2019, 11492, 855-866.	1.0	37

#	Article	IF	CITATIONS
91	Common variants contribute to intrinsic human brain functional networks. Nature Genetics, 2022, 54, 508-517.	9.4	37
92	Quantitative regional brain water measurement with magnetic resonance imaging in a focal ischemia model. Magnetic Resonance in Medicine, 1997, 38, 303-310.	1.9	36
93	The emergence of a functionally flexible brain during early infancy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23904-23913.	3.3	36
94	SPHERE: SPherical Harmonic Elastic REgistration of HARDI data. NeuroImage, 2011, 55, 545-556.	2.1	35
95	Frequency of spontaneous BOLD signal shifts during infancy and correlates with cognitive performance. Developmental Cognitive Neuroscience, 2015, 12, 40-50.	1.9	35
96	Structured Learning for 3-D Perivascular Space Segmentation Using Vascular Features. IEEE Transactions on Biomedical Engineering, 2017, 64, 2803-2812.	2.5	35
97	Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Medical Image Analysis, 2014, 18, 1274-1289.	7.0	34
98	Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness. Human Brain Mapping, 2015, 36, 5183-5195.	1.9	32
99	Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patchâ€based groupâ€wise sparse representation. Human Brain Mapping, 2019, 40, 3860-3880.	1.9	31
100	Development of Amygdala Functional Connectivity During Infancy and Its Relationship With 4-Year Behavioral Outcomes. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 62-71.	1.1	31
101	Signal Evolution and Infarction Risk for Apparent Diffusion Coefficient Lesions in Acute Ischemic Stroke Are Both Time- and Perfusion-Dependent. Stroke, 2011, 42, 1276-1281.	1.0	30
102	Dynamic perfusion and diffusion MRI of cortical spreading depolarization in photothrombotic ischemia. Neurobiology of Disease, 2014, 71, 131-139.	2.1	29
103	Enhancement of Perivascular Spaces in 7 T MR Image using Haar Transform of Non-local Cubes and Block-matching Filtering. Scientific Reports, 2017, 7, 8569.	1.6	29
104	Human milk 3'-Sialyllactose is positively associated with language development during infancy. American Journal of Clinical Nutrition, 2021, 114, 588-597.	2.2	29
105	Morphology of perivascular spaces and enclosed blood vessels in young to middle-aged healthy adults at 7T: Dependences on age, brain region, and breathing gas. NeuroImage, 2020, 218, 116978.	2.1	28
106	Preexisting Statin Use Is Associated With Greater Reperfusion in Hyperacute Ischemic Stroke. Stroke, 2011, 42, 1307-1313.	1.0	27
107	Probabilistic Air Segmentation and Sparse Regression Estimated Pseudo CT for PET/MR Attenuation Correction. Radiology, 2015, 275, 562-569.	3.6	27
108	Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing. Medical Image Analysis, 2016, 28, 1-12.	7.0	27

#	Article	IF	CITATIONS
109	Disentangled-Multimodal Adversarial Autoencoder: Application to Infant Age Prediction With Incomplete Multimodal Neuroimages. IEEE Transactions on Medical Imaging, 2020, 39, 4137-4149.	5.4	27
110	Effects of acute normovolemic hemodilution onT2* - weighted images of rat brain. Magnetic Resonance in Medicine, 1998, 40, 857-864.	1.9	26
111	Computerized assessment of vessel morphological changes during treatment of glioblastoma multiforme: Report of a case imaged serially by MRA over four years. NeuroImage, 2009, 47, T143-T151.	2.1	26
112	Submillimeter MR fingerprinting using deep learning–based tissue quantification. Magnetic Resonance in Medicine, 2020, 84, 579-591.	1.9	26
113	Intravascular contrast agent improves magnetic resonance angiography of carotid arteries in minipigs. Journal of Magnetic Resonance Imaging, 1997, 7, 963-971.	1.9	25
114	STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data. NeuroImage, 2016, 134, 550-562.	2.1	25
115	Exploring folding patterns of infant cerebral cortex based on multi-view curvature features: Methods and applications. NeuroImage, 2019, 185, 575-592.	2.1	25
116	Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins. Human Brain Mapping, 2020, 41, 1985-2003.	1.9	25
117	Multi-task prediction of infant cognitive scores from longitudinal incomplete neuroimaging data. NeuroImage, 2019, 185, 783-792.	2.1	24
118	Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI. NeuroImage, 2017, 152, 411-424.	2.1	23
119	Ultra-Fast T2-Weighted MR Reconstruction Using Complementary T1-Weighted Information. Lecture Notes in Computer Science, 2018, 11070, 215-223.	1.0	23
120	Denoising of Diffusion MRI Data via Graph Framelet Matching in x-q Space. IEEE Transactions on Medical Imaging, 2019, 38, 2838-2848.	5.4	23
121	Imaging Oxygen Metabolism in Acute Stroke Using MRI. Current Radiology Reports, 2014, 2, 39.	0.4	22
122	Evaluation of PET/MRI for Tumor Volume Delineation for Head and Neck Cancer. Frontiers in Oncology, 2017, 7, 8.	1.3	22
123	Enhancement of Perivascular Spaces Using Densely Connected Deep Convolutional Neural Network. IEEE Access, 2019, 7, 18382-18391.	2.6	22
124	RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting. Lecture Notes in Computer Science, 2019, 11766, 101-109.	1.0	22
125	Alternate Metabolic Programs Define Regional Variation of Relevant Biological Features in Renal Cell Carcinoma Progression. Clinical Cancer Research, 2016, 22, 2950-2959.	3.2	21
126	Registration-Free Infant Cortical Surface Parcellation Using Deep Convolutional Neural Networks. Lecture Notes in Computer Science, 2018, 11072, 672-680.	1.0	21

#	Article	IF	CITATIONS
127	Learning MRI artefact removal with unpaired data. Nature Machine Intelligence, 2021, 3, 60-67.	8.3	21
128	Anatomyâ€guided joint tissue segmentation and topological correction for 6â€month infant brain MRI with risk of autism. Human Brain Mapping, 2018, 39, 2609-2623.	1.9	20
129	Detection of Azoxystrobin Fungicide and Metabolite Azoxystrobin-Acid in Pregnant Women and Children, Estimation of Daily Intake, and Evaluation of Placental and Lactational Transfer in Mice. Environmental Health Perspectives, 2022, 130, 27013.	2.8	20
130	A unified optimization approach for diffusion tensor imaging technique. Neurolmage, 2009, 44, 729-741.	2.1	19
131	Scalable joint segmentation and registration framework for infant brain images. Neurocomputing, 2017, 229, 54-62.	3.5	19
132	Brain functional development separates into three distinct time periods in the first two years of life. NeuroImage, 2019, 189, 715-726.	2.1	19
133	Noninvasive Measurements of Cerebral Blood Flow, Oxygen Extraction Fraction, and Oxygen Metabolic Index in Human with Inhalation of Air and Carbogen using Magnetic Resonance Imaging. Translational Stroke Research, 2012, 3, 246-254.	2.3	18
134	Emergence of a hierarchical brain during infancy reflected by stepwise functional connectivity. Human Brain Mapping, 2017, 38, 2666-2682.	1.9	18
135	Discovering cortical sulcal folding patterns in neonates using largeâ€scale dataset. Human Brain Mapping, 2018, 39, 3625-3635.	1.9	18
136	Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network. NeuroImage, 2019, 198, 114-124.	2.1	18
137	Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation. Medical Image Analysis, 2019, 55, 76-87.	7.0	18
138	Effects of prenatal opioid exposure on functional networks in infancy. Developmental Cognitive Neuroscience, 2021, 51, 100996.	1.9	18
139	Oxygen Metabolism in Ischemic Stroke Using Magnetic Resonance Imaging. Translational Stroke Research, 2012, 3, 65-75.	2.3	17
140	Learningâ€based subjectâ€specific estimation of dynamic maps of cortical morphology at missing time points in longitudinal infant studies. Human Brain Mapping, 2016, 37, 4129-4147.	1.9	17
141	Initial assessment of 3D magnetic resonance fingerprinting (MRF) towards quantitative brain imaging for radiation therapy. Medical Physics, 2020, 47, 1199-1214.	1.6	17
142	S3Reg: Superfast Spherical Surface Registration Based on Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 1964-1976.	5.4	17
143	Estimation of Brain Network Atlases Using Diffusive-Shrinking Graphs: Application to Developing Brains. Lecture Notes in Computer Science, 2017, 10265, 385-397.	1.0	17
144	Existence of Functional Connectome Fingerprint during Infancy and Its Stability over Months. Journal of Neuroscience, 2022, 42, 377-389.	1.7	17

#	Article	IF	CITATIONS
145	Clinically Relevant Reperfusion in Acute Ischemic Stroke: MTT Performs Better than Tmax and TTP. Translational Stroke Research, 2014, 5, 415-421.	2.3	16
146	High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline. Human Gene Therapy, 2015, 26, 614-621.	1.4	16
147	Frnet: Flattened Residual Network for Infant MRI Skull Stripping. , 2019, 2019, 999-1002.		15
148	4D Infant Cortical Surface Atlas Construction Using Spherical Patch-Based Sparse Representation. Lecture Notes in Computer Science, 2017, 10433, 57-65.	1.0	15
149	Defining the Ischemic Penumbra Using Hyperacute Neuroimaging: Deriving Quantitative Ischemic Thresholds. Translational Stroke Research, 2012, 3, 198-204.	2.3	14
150	Can we predict subjectâ€specific dynamic cortical thickness maps during infancy from birth?. Human Brain Mapping, 2017, 38, 2865-2874.	1.9	14
151	Real-Time Quality Assessment of Pediatric MRI via Semi-Supervised Deep Nonlocal Residual Neural Networks. IEEE Transactions on Image Processing, 2020, 29, 7697-7706.	6.0	14
152	The maturation and cognitive relevance of structural brain network organization from early infancy to childhood. NeuroImage, 2021, 238, 118232.	2.1	14
153	Early Changes of Tissue Perfusion After Tissue Plasminogen Activator in Hyperacute Ischemic Stroke. Stroke, 2011, 42, 65-72.	1.0	13
154	Unpaired Deep Cross-Modality Synthesis with Fast Training. Lecture Notes in Computer Science, 2018, 11045, 155-164.	1.0	13
155	A 4D infant brain volumetric atlas based on the UNC/UMN baby connectome project (BCP) cohort. NeuroImage, 2022, 253, 119097.	2.1	13
156	Lateral ventricle morphology analysis via mean latitude axis. , 2013, 8672, .		12
157	Quantitative Comparison of Misregistration in Abdominal and Pelvic Organs Between PET/MRI and PET/CT: Effect of Mode of Acquisition and Type of Sequence on Different Organs. American Journal of Roentgenology, 2015, 205, 1295-1305.	1.0	12
158	Locality Adaptive Multi-modality GANs for High-Quality PET Image Synthesis. Lecture Notes in Computer Science, 2018, 11070, 329-337.	1.0	12
159	Probing Tissue Microarchitecture of the Baby Brain via Spherical Mean Spectrum Imaging. IEEE Transactions on Medical Imaging, 2020, 39, 1-1.	5.4	12
160	Development of Dynamic Functional Architecture during Early Infancy. Cerebral Cortex, 2020, 30, 5626-5638.	1.6	12
161	Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance. Lecture Notes in Computer Science, 2019, 11795, 243-251.	1.0	12
162	Prediction of Infant MRI Appearance and Anatomical Structure Evolution Using Sparse Patch-Based Metamorphosis Learning Framework. Lecture Notes in Computer Science, 2015, 9467, 197-204.	1.0	12

#	Article	IF	CITATIONS
163	A Deep Learning Framework for Noise Component Detection from Resting-State Functional MRI. Lecture Notes in Computer Science, 2019, , 754-762.	1.0	12
164	Reperfusion Beyond 6 Hours Reduces Infarct Probability in Moderately Ischemic Brain Tissue. Stroke, 2016, 47, 99-105.	1.0	11
165	Surface-constrained volumetric registration for the early developing brain. Medical Image Analysis, 2019, 58, 101540.	7.0	11
166	Hierarchical and symmetric infant image registration by robust longitudinalâ€exampleâ€guided correspondence detection. Medical Physics, 2015, 42, 4174-4189.	1.6	10
167	Increased Cortical Cerebral Blood Flow in Asymptomatic Human Immunodeficiency Virus-Infected Subjects. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 1891-1895.	0.7	10
168	XQ-SR: Joint x-q space super-resolution with application to infant diffusion MRI. Medical Image Analysis, 2019, 57, 44-55.	7.0	10
169	Tract Dictionary Learning for Fast and Robust Recognition of Fiber Bundles. Lecture Notes in Computer Science, 2020, 12267, 251-259.	1.0	10
170	Graph-Constrained Sparse Construction of Longitudinal Diffusion-Weighted Infant Atlases. Lecture Notes in Computer Science, 2017, 10433, 49-56.	1.0	10
171	Three-dimensional time-of-flight MR angiography with variable TE (VARIETE) for fat signal reduction. Magnetic Resonance in Medicine, 1994, 32, 678-683.	1.9	9
172	Evidence-based neuroimaging in acute ischemic stroke. Neuroimaging Clinics of North America, 2003, 13, 167-183.	0.5	9
173	Multidirectional and Topography-based Dynamic-scale Varifold Representations with Application to Matching Developing Cortical Surfaces. NeuroImage, 2016, 135, 152-162.	2.1	9
174	Hierarchical Nonlocal Residual Networks for Image Quality Assessment of Pediatric Diffusion MRI With Limited and Noisy Annotations. IEEE Transactions on Medical Imaging, 2020, 39, 3691-3702.	5.4	9
175	Estimating Tissue Microstructure with Undersampled Diffusion Data via Graph Convolutional Neural Networks. Lecture Notes in Computer Science, 2020, 12267, 280-290.	1.0	9
176	Multi-atlas Based Simultaneous Labeling of Longitudinal Dynamic Cortical Surfaces in Infants. Lecture Notes in Computer Science, 2013, 16, 58-65.	1.0	9
177	Multivariate Longitudinal Shape Analysis of Human Lateral Ventricles during the First Twenty-Four Months of Life. PLoS ONE, 2014, 9, e108306.	1.1	9
178	MR Imaging of Oxygen Extraction and Neurovascular Coupling. Stroke, 2013, 44, S61-S64.	1.0	8
179	Spatioâ€angular consistent construction of neonatal diffusion MRI atlases. Human Brain Mapping, 2017, 38, 3175-3189.	1.9	8
180	Hippocampal Segmentation From Longitudinal Infant Brain MR Images via Classification-Guided Boundary Regression. IEEE Access, 2019, 7, 33728-33740.	2.6	8

#	Article	IF	CITATIONS
181	Segmentation of Infant Hippocampus Using Common Feature Representations Learned for Multimodal Longitudinal Data. Lecture Notes in Computer Science, 2015, 9351, 63-71.	1.0	8
182	Segmentation of Perivascular Spaces Using Vascular Features and Structured Random Forest from 7T MR Image. Lecture Notes in Computer Science, 2016, 10019, 61-68.	1.0	8
183	Quantification of Measurement Error in DTI: Theoretical Predictions and Validation. , 2007, 10, 10-17.		8
184	Integration of Sparse Multi-modality Representation and Geometrical Constraint for Isointense Infant Brain Segmentation. Lecture Notes in Computer Science, 2013, 16, 703-710.	1.0	8
185	Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory. Scientific Reports, 2016, 6, 37666.	1.6	7
186	Construction of spatiotemporal neonatal cortical surface atlases using a large-scale dataset. , 2018, 2018, 1056-1059.		7
187	Asymmetry Spectrum Imaging for Baby Diffusion Tractography. Lecture Notes in Computer Science, 2019, 11492, 319-331.	1.0	7
188	Multi-Regression based supervised sample selection for predicting baby connectome evolution trajectory from neonatal timepoint. Medical Image Analysis, 2021, 68, 101853.	7.0	7
189	Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset. Lecture Notes in Computer Science, 2016, 9900, 10-18.	1.0	7
190	A current perspective of the status of understanding BOLD imaging and its use in studying brain function: a summary of the workshop at the University of North Carolina in Chapel Hill, 26-28 October, 2000. NMR in Biomedicine, 2001, 14, 384-388.	1.6	6
191	Rapid Perfusion Abnormality Estimation in Acute Stroke With Temporal Correlation Analysis. Stroke, 2003, 34, 1686-1692.	1.0	6
192	Spatio-temporal analysis of early brain development. , 2010, 2010, 777-781.		6
193	TOWERS: Tâ€One with Enhanced Robustness and Speed. Magnetic Resonance in Medicine, 2016, 76, 118-126.	1.9	6
194	Angular Upsampling in Infant Diffusion MRI Using Neighborhood Matching in x-q Space. Frontiers in Neuroinformatics, 2018, 12, 57.	1.3	6
195	Quantitative phase contrast MRI of penetrating arteries in centrum semiovale at 7T. NeuroImage, 2019, 195, 463-474.	2.1	6
196	Effects of motion and retrospective motion correction on the visualization and quantification of perivascular spaces in ultrahigh resolution T2â€weighted images at 7T. Magnetic Resonance in Medicine, 2021, 86, 1944-1955.	1.9	6
197	ABCnet: Adversarial bias correction network for infant brain MR images. Medical Image Analysis, 2021, 72, 102133.	7.0	6
198	Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation. Lecture Notes in Computer Science, 2020, 12436, 663-673.	1.0	6

#	Article	IF	CITATIONS
199	Exploring Gyral Patterns of Infant Cortical Folding Based on Multi-view Curvature Information. Lecture Notes in Computer Science, 2017, 10433, 12-20.	1.0	5
200	Spherical U-Net For Infant Cortical Surface Parcellation. , 2019, 2019, 1882-1886.		5
201	Multi-stage Image Quality Assessment of Diffusion MRI via Semi-supervised Nonlocal Residual Networks. Lecture Notes in Computer Science, 2019, 11766, 521-528.	1.0	5
202	Semi-supervised VAE-GAN for Out-of-Sample Detection Applied to MRI Quality Control. Lecture Notes in Computer Science, 2019, , 127-136.	1.0	5
203	Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising. NeuroImage, 2022, 254, 119127.	2.1	5
204	Graph-Based Deep Learning forÂPrediction of Longitudinal Infant Diffusion MRI Data. Mathematics and Visualization, 2019, 2019, 133-141.	0.4	4
205	Surface-Volume Consistent Construction of Longitudinal Atlases for the Early Developing Brain. Lecture Notes in Computer Science, 2019, 11765, 815-822.	1.0	4
206	Intrinsic Patch-Based Cortical Anatomical Parcellation Using Graph Convolutional Neural Network on Surface Manifold. Lecture Notes in Computer Science, 2019, 11766, 492-500.	1.0	4
207	Parcellation of Infant Surface Atlas Using Developmental Trajectories of Multidimensional Cortical Attributes. Lecture Notes in Computer Science, 2015, 9351, 543-550.	1.0	4
208	A Hybrid Multishape Learning Framework for Longitudinal Prediction of Cortical Surfaces and Fiber Tracts Using Neonatal Data. Lecture Notes in Computer Science, 2016, 9900, 210-218.	1.0	4
209	Neural alterations in opioid-exposed infants revealed by edge-centric brain functional networks. Brain Communications, 2022, 4, .	1.5	4
210	Prospective motion correction and automatic segmentation of penetrating arteries in phase contrast <scp>MRI</scp> at 7 T. Magnetic Resonance in Medicine, 2022, 88, 2088-2100.	1.9	4
211	Towards analysis of growth trajectory through multimodal longitudinal MR imaging. , 2010, 7623, .		3
212	Joint Sparse and Low-Rank Regularized Multi-Task Multi-Linear Regression for Prediction of Infant Brain Development with Incomplete Data. Lecture Notes in Computer Science, 2017, 10433, 40-48.	1.0	3
213	Enhancement of Perivascular Spaces Using a Very Deep 3D Dense Network. Lecture Notes in Computer Science, 2018, , 18-25.	1.0	3
214	A computational method for longitudinal mapping of orientation-specific expansion of cortical surface in infants. Medical Image Analysis, 2018, 49, 46-59.	7.0	3
215	Cortical Foldingprints for Infant Identification. , 2019, 2019, 396-399.		3
216	6-Month Infant Brain Mri Segmentation Guided by 24-Month Data Using Cycle-Consistent Adversarial Networks. , 2020, 2020, .		3

#	Article	IF	CITATIONS
217	Automatic Accurate Infant Cerebellar Tissue Segmentation with Densely Connected Convolutional Network. Lecture Notes in Computer Science, 2018, 11046, 233-240.	1.0	3
218	Progressive Infant Brain Connectivity Evolution Prediction from Neonatal MRI Using Bidirectionally Supervised Sample Selection. Lecture Notes in Computer Science, 2019, , 63-72.	1.0	3
219	Infant Cognitive Scores Prediction with Multi-stream Attention-Based Temporal Path Signature Features. Lecture Notes in Computer Science, 2020, 12267, 134-144.	1.0	3
220	A Deep Spatial Context Guided Framework for Infant Brain Subcortical Segmentation. Lecture Notes in Computer Science, 2020, 12267, 646-656.	1.0	3
221	Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting. Lecture Notes in Computer Science, 2020, 12267, 72-82.	1.0	3
222	Topography-Based Registration of Developing Cortical Surfaces in Infants Using Multidirectional Varifold Representation. Lecture Notes in Computer Science, 2015, 9350, 230-237.	1.0	3
223	Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF). Lecture Notes in Computer Science, 2018, 11046, 398-405.	1.0	3
224	Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network. Lecture Notes in Computer Science, 2020, , 158-166.	1.0	3
225	Longitudinal multi-scale mapping of infant cortical folding using spherical wavelets. , 2017, , .		2
226	Estimation of shape and growth brain network atlases for connectomic brain mapping in developing infants. , 2018, 2018, 985-989.		2
227	A computational method for longitudinal mapping of orientation-specific expansion of cortical surface area in infants. , 2018, 2018, 683-686.		2
228	Infant brain development prediction with latent partial multi-view representation learning. , 2018, 2018, 1048-1051.		2
229	Construction of 4D Neonatal Cortical Surface Atlases Using Wasserstein Distance. , 2019, 2019, 995-998.		2
230	Hippocampal Sulcus Remnant: Common Finding in Nonelderly Adults on Ultra-High-Resolution 7T Magnetic Resonance Imaging. Journal of Computer Assisted Tomography, 2020, 44, 43-46.	0.5	2
231	Reference-Relation Guided Autoencoder with Deep CCA Restriction for Awake-to-Sleep Brain Functional Connectome Prediction. Lecture Notes in Computer Science, 2021, , 231-240.	1.0	2
232	Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based onÂDeep Learning. Lecture Notes in Computer Science, 2021, 12904, 139-149.	1.0	2
233	A Few-Shot Learning Graph Multi-trajectory Evolution Network forÂForecasting Multimodal Baby Connectivity Development from aÂBaseline Timepoint. Lecture Notes in Computer Science, 2021, , 11-24.	1.0	2
234	Brainwide functional networks associated with anatomically- and functionally-defined hippocampal subfields using ultrahigh-resolution fMRI. Scientific Reports, 2021, 11, 10835.	1.6	2

#	Article	IF	CITATIONS
235	Modeling individual differences in the timing of change onset and offset Psychological Methods, 2023, 28, 401-421.	2.7	2
236	Multi-scale Self-supervised Learning for Multi-site Pediatric Brain MR Image Segmentation with Motion/Gibbs Artifacts. Lecture Notes in Computer Science, 2021, 12966, 171-179.	1.0	2
237	Unsupervised Learning for Spherical Surface Registration. Lecture Notes in Computer Science, 2020, 12436, 373-383.	1.0	2
238	Absolute Oxygenation Metabolism Measurements Using Magnetic Resonance Imaging. Open Neuroimaging Journal, 2011, 5, 120-135.	0.2	2
239	Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties. Lecture Notes in Computer Science, 2019, 11765, 841-849.	1.0	2
240	Deep Granular Feature-Label Distribution Learning for Neuroimaging-Based Infant Age Prediction. Lecture Notes in Computer Science, 2019, 11767, 149-157.	1.0	2
241	Magnetic Resonance Fingerprinting of the Pediatric Brain. Magnetic Resonance Imaging Clinics of North America, 2021, 29, 605-616.	0.6	2
242	A Computational Framework for Dissociating Development-Related from Individually Variable Flexibility in Regional Modularity Assignment in Early Infancy. Lecture Notes in Computer Science, 2020, 12267, 13-21.	1.0	2
243	LONGITUDINAL MULTI-SCALE MAPPING OF INFANT CORTICAL FOLDING USING SPHERICAL WAVELETS. Proceedings, 2017, 2017, 93-96.	0.0	2
244	Spherical Transformer for Quality Assessment of Pediatric Cortical Surfaces. , 2022, 2022, .		2
245	Editorial. Translational Stroke Research, 2012, 3, 173-177.	2.3	1
246	Measuring longitudinally dynamic cortex development in infants by reconstruction of consistent cortical surfaces. , 2013, , .		1
247	Patch-driven neonatal brain MRI segmentation with sparse representation and level sets. , 2013, , .		1
248	Tailor the longitudinal anaysis for nih longitudinal normal brain developmental study. , 2014, 2014, 1206-1209.		1
249	Subject-Specific Estimation of Missing Cortical Thickness Maps in Developing Infant Brains. Lecture Notes in Computer Science, 2016, 9601, 83-92.	1.0	1
250	Hybrid PET/MR: State-of-the-Art and Future Challenges. Magnetic Resonance Imaging Clinics of North America, 2017, 25, xv-xvii.	0.6	1
251	Multi-site Incremental Image Quality Assessment of Structural MRI via Consensus Adversarial Representation Adaptation. Lecture Notes in Computer Science, 2021, , 381-389.	1.0	1
252	LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images. Lecture Notes in Computer Science, 2017, 2017, 26-34.	1.0	1

#	Article	IF	CITATIONS
253	Isointense Infant Brain Segmentation by Stacked Kernel Canonical Correlation Analysis. Lecture Notes in Computer Science, 2015, 9467, 28-36.	1.0	1
254	Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface. Lecture Notes in Computer Science, 2017, 10433, 66-74.	1.0	1
255	Construction of Spatiotemporal Infant Cortical Surface Functional Templates. Lecture Notes in Computer Science, 2020, 12267, 238-248.	1.0	1
256	Automatic Segmentation of 3D Perivascular Spaces in 7T MR Images Using Multi-Channel Fully Convolutional Network. Proceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition., 2018, 2018, .	0.5	1
257	Rapid Diffusion Magnetic Resonance Imaging Using Slice-Interleaved Encoding. Medical Image Analysis, 2022, 81, 102548.	7.0	1
258	Neuroimaging in Acute Ischemic Stroke. , 2006, , 160-179.		0
259	Acute Ischemic Stroke: Evidence-Based Neuroimaging. , 2013, , 147-166.		0
260	Thrombolysis enhanced by dual-frequency highintensity focused ultrasound. , 2014, , .		0
261	Cortical Surface-Based Construction of Individual Structural Network with Application to Early Brain Development Study. Lecture Notes in Computer Science, 2015, 9351, 560-568.	1.0	0
262	Longitudinally-Consistent Parcellation of Infant Population Cortical Surfaces Based on Functional Connectivity. Lecture Notes in Computer Science, 2017, , 194-202.	1.0	0
263	Charting Development-Based Joint Parcellation Maps Of Human and Macaque Brains During Infancy. , 2019, 2019, 422-425.		0
264	Young Brain $\hat{a} \in$ Big Appetite. Annals of Nutrition and Metabolism, 2019, 75, 5-6.	1.0	0
265	Phthalates and pyrethroids in infants and toddlers: concentrations, stability of repeat measures, and predictors of exposure. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
266	Intracranial vascular transfer function in acute stroke patients. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S394-S394.	2.4	0
267	Temporal evolution of cerebral metabolic rate of oxygen utilization using MRI in a middle cerebral artery occlusion stroke. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S400-S400.	2.4	0
268	11 Neuroimaging in Acute Ischemic Stroke. , 2011, , 183-198.		0
269	Abstract T P45: Automated CSF Segmentation to Quantify Cerebral Edema Following Large Hemispheric Ischemic Stroke. Stroke, 2015, 46, .	1.0	0
270	Abstract WMP20: Validation of an Efficient Machine-learning Approach to Quantify CSF Volume Changes Using Multicenter CT Scans. Stroke, 2016, 47, .	1.0	0

#	Article	IF	CITATIONS
271	Globally Optimized Super-Resolution of Diffusion MRI Data via Fiber Continuity. Lecture Notes in Computer Science, 2020, 12267, 260-269.	1.0	0
272	Surface-based analysis of the developing cerebral cortex. Advances in Magnetic Resonance Technology and Applications, 2021, , 287-307.	0.0	0
273	Fast Correction of Eddy-Current and Susceptibility-Induced Distortions Using Rotation-Invariant Contrasts. Lecture Notes in Computer Science, 2020, 12262, 34-43.	1.0	0
274	Reconstruction in deep learning of highly under-sampled T2-weighted image with T1-weighted image. Proceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition., 2018, 2018, .	0.5	0