
Wei-Lu Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical Study of Non-Fullerene Acceptors Using End-Capped Groups with Different Electron-Withdrawing Abilities toward Efficient Organic Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 916-922.	4.6	24
2	Machine Learning Screening of Efficient Ionic Liquids for Targeted Cleavage of the β–O–4 Bond of Lignin. Journal of Physical Chemistry B, 2022, 126, 3693-3704.	2.6	6
3	Ultrathin Covalent Organic Framework Anchored on Graphene for Enhanced Organic Pollutant Removal. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
4	Structural Engineering of FDT toward Promising Spiro-Typed Hole-Transporting Materials: Promoting the HOMO Levels. Journal of Physical Chemistry C, 2022, 126, 11529-11536.	3.1	11
5	Probing the effect of acceptor engineering in benzothiadiazole-based D-A-D-typed hole-transporting materials for perovskite solar cells. Synthetic Metals, 2022, 289, 117136.	3.9	12
6	Molecular design of dibenzo[g,p]chrysene-based hole-transporting materials for perovskite solar cells: A theoretical study. Synthetic Metals, 2021, 271, 116631.	3.9	13
7	Probing Charge Injection-Induced Structural Transition in Ionic Liquids Confined at the MoS ₂ Surface. Industrial & Engineering Chemistry Research, 2021, 60, 7835-7843.	3.7	1
8	Azatriphenylene-based D-A-D-typed hole-transporting materials for perovskite solar cells with tunable energy levels and high mobility. Solar Energy, 2021, 224, 491-499.	6.1	23
9	Investigating the property and strength of intermolecular interaction in saturated and unsaturated cyclic cations constructed ionic liquids. Journal of Molecular Liquids, 2021, 335, 116253.	4.9	5
10	Ionic liquid decoration for the hole transport improvement of PEDOT. Materials Advances, 2021, 2, 2009-2020.	5.4	8
11	Accelerating evaluation of the mobility of ionic liquid-modulated PEDOT flexible electronics using machine learning. Journal of Materials Chemistry A, 2021, 9, 25547-25557.	10.3	11
12	Probing impacts of π-conjugation and multiarm on the performance of two-dimensionally expanded small molecule hole-transporting materials: A theoretical investigation. Synthetic Metals, 2020, 259, 116219.	3.9	13
13	Boosting the performance of D–A–D type hole-transporting materials for perovskite solar cells <i>via</i> tuning the acceptor group. New Journal of Chemistry, 2020, 44, 15244-15250.	2.8	21
14	Boosting the hole transport of conductive polymers by regulating the ion ratio in ionic liquid additives. Physical Chemistry Chemical Physics, 2020, 22, 9796-9807.	2.8	9
15	Tailoring of the core structure towards promising small molecule hole-transporting materials for perovskite solar cells: a theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 16359-16367.	2.8	15
16	Understanding the effects of the co-sensitizing ratio on the surface potential, electron injection efficiency, and Förster resonance energy transfer. Physical Chemistry Chemical Physics, 2020, 22, 5568-5576.	2.8	5
17	Rational design of aggregation-induced emission sensor based on Rhodamine B for turn-on sensing of trivalent metal cations, reversible data protection, and bioimaging. Materials Chemistry Frontiers, 2019, 3, 151-160.	5.9	41
18	Potentialâ€Energy Surface and Dynamics Simulation of THBDBA: An Annulated Tetraphenylethene Derivative Combining Aggregationâ€Induced Emission and Switch Behavior. ChemPhotoChem, 2019, 3, 814-824.	3.0	12

Wei-Lu Ding

#	Article	lF	CITATIONS
19	How to stabilize the HOMO levels and to improve the charge transport properties of hole-transporting materials? Introducing a symmetrical core unit. Synthetic Metals, 2019, 247, 157-162.	3.9	17
20	How to design more efficient hole-transporting materials for perovskite solar cells? Rational tailoring of the triphenylamine-based electron donor. Nanoscale, 2018, 10, 20329-20338.	5.6	59
21	Theoretical insights into photo-induced Curtius rearrangement of chlorodifluoroacetyl azide. Organic Chemistry Frontiers, 2017, 4, 1153-1161.	4.5	14
22	Novel bifunctional aromatic linker utilized in CdSe quantum dots-sensitized solar cells: boosting the open-circuit voltage and electron injection. Journal of Materials Chemistry A, 2017, 5, 14319-14330.	10.3	16
23	Extending donor size in D-A-Ï€-A organic dye for dye sensitized solar cells: Anti-aggregation and improving electron injection. Journal of Molecular Graphics and Modelling, 2017, 77, 322-329.	2.4	2
24	The electron injection rate in CdSe quantum dot sensitized solar cells: from a bifunctional linker and zinc oxide morphology. Nanoscale, 2017, 9, 16806-16816.	5.6	8
25	Rational design of near-infrared Zn-porphyrin dye utilized in co-sensitizedÂsolar cell toward high efficiency. Dyes and Pigments, 2017, 136, 450-457.	3.7	16
26	Influence of oligothiophene-functionalized co-sensitizer on the electron injection efficiency for multiple dye-TiO2 interface. Organic Electronics, 2016, 38, 384-395.	2.6	6
27	Anti-aggregation and intra-type Förster resonance energy transfer in bulky indoline sensitizers for dye-sensitized solar cells: a combined DFT/TDDFT and molecular dynamics study. Journal of Materials Chemistry A, 2015, 3, 19948-19959.	10.3	16
28	The master factors influencing the efficiency of D–A–π–A configurated organic sensitizers in dye-sensitized solar cell via theoretically characterization: Design and verification. Dyes and Pigments, 2014, 105, 192-201.	3.7	21
29	Molecular Engineering of Indoline-Based D–Aâ^ï€â€"A Organic Sensitizers toward High Efficiency Performance from First-Principles Calculations. Journal of Physical Chemistry C, 2013, 117, 17382-17398.	3.1	79
30	Density functional theory characterization and verification of high-performance indoline dyes with D–A–π–A architecture for dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 125-135.	3.7	98
31	Ultrathin Covalent Organic Framework Anchored on Graphene For Enhanced Organic Pollutant Removal. Angewandte Chemie, 0, , .	2.0	2