
Daniel Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upgrading of flax powder and short fibers into high value-added products. Journal of Environmental Chemical Engineering, 2022, 10, 107195.	6.7	0
2	Easy enrichment of graphitic nitrogen to prepare highly catalytic carbons for oxygen reduction reaction. Carbon, 2022, , .	10.3	7
3	Long-Term Outcome of Prostatic Artery Embolization for Patients with Benign Prostatic Hyperplasia: Single-Centre Retrospective Study in 1072 Patients Over a 10-Year Period. CardioVascular and Interventional Radiology, 2022, 45, 1324-1336.	2.0	29
4	Chlorine removal from the pyrolysis of urban polyolefinic waste in a semi-batch reactor. Journal of Environmental Chemical Engineering, 2021, 9, 104920.	6.7	16
5	Non-oxidative decomposition of propane: Ni-Cu/Al2O3 catalyst for the production of CO2-free hydrogen and high-value carbon nanofibers. Journal of Environmental Chemical Engineering, 2021, 9, 105022.	6.7	5
6	Custom-sized graphene oxide for the hydrolysis of cellulose. Carbon, 2021, 175, 429-439.	10.3	9
7	On the hydrothermal-enhanced synthesis of highly selective Mo2C catalysts to fully deoxygenated products in the guaiacol HDO reaction. Journal of Environmental Chemical Engineering, 2021, 9, 105146.	6.7	12
8	Review on the preparation of carbon membranes derived from phenolic resins for gas separation: From petrochemical precursors to bioresources. Carbon, 2021, 183, 12-33.	10.3	38
9	Natural Fe-based catalysts for the production of hydrogen and carbon nanomaterials via methane decomposition. International Journal of Hydrogen Energy, 2021, 46, 35137-35148.	7.1	26
10	Prostatic Artery Embolization for Benign Prostatic Hyperplasia—A Primer for Interventional Radiologists. The Arab Journal of Interventional Radiology, 2021, 05, 060-067.	0.1	1
11	Influence of carburization time on the activity of Mo2C/CNF catalysts for the HDO of guaiacol. Catalysis Today, 2020, 357, 240-247.	4.4	19
12	Graphene oxide nanofibers: A nanocarbon material with tuneable electrochemical properties. Applied Surface Science, 2020, 509, 144774.	6.1	14
13	Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers. Nanomaterials, 2020, 10, 1056.	4.1	13
14	Cobalt doping of α-Fe/Al2O3 catalysts for the production of hydrogen and high-quality carbon nanotubes by thermal decomposition of methane. International Journal of Hydrogen Energy, 2020, 45, 19313-19323.	7.1	25
15	Nanostructured Carbon Material Effect on the Synthesis of Carbon-Supported Molybdenum Carbide Catalysts for Guaiacol Hydrodeoxygenation. Energies, 2020, 13, 1189.	3.1	7
16	Synthesis and characterization of a supported Pd complex on carbon nanofibers for the selective decarbonylation of stearic acid to 1-heptadecene: the importance of subnanometric Pd dispersion. Catalysis Science and Technology, 2020, 10, 2970-2985.	4.1	6
17	Hydrochloric acid removal from the thermogravimetric pyrolysis of PVC. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104831.	5.5	37
18	Scanning different Ni-noble metal (Pt, Pd, Ru) bimetallic nanoparticles supported on carbon nanofibers for one-pot cellobiose conversion. Applied Catalysis A: General, 2019, 585, 117182	4.3	22

#	Article	IF	CITATIONS	
19	Prostatic Artery Embolization for Benign Prostatic Hyperplasia: Prospective Randomized Trial of 100–300 μm versus 300–500 μm versus 100- to 300-μmÂ+ 300- to 500-μm Embospheres. Journal of Va scu lar and48 Interventional Radiology, 2019, 30, 638-644.			
20	Performance and stability of counter electrodes based on reduced few-layer graphene oxide sheets and reduced graphene oxide quantum dots for dye-sensitized solar cells. Electrochimica Acta, 2019, 306, 396-406.	5.2	27	
21	Screening of Ni-Cu bimetallic catalysts for hydrogen and carbon nanofilaments production via catalytic decomposition of methane. Applied Catalysis A: General, 2018, 559, 10-19.	4.3	50	
22	Effect of oxygen and structural properties on the electrical conductivity of powders of nanostructured carbon materials. Powder Technology, 2018, 340, 380-388.	4.2	30	
23	Co-, Cu- and Fe-Doped Ni/Al2O3 Catalysts for the Catalytic Decomposition of Methane into Hydrogen and Carbon Nanofibers. Catalysts, 2018, 8, 300.	3.5	38	
24	Structure of Copper–Cobalt Surface Alloys in Equilibrium with Carbon Monoxide Gas. Journal of the American Chemical Society, 2018, 140, 6575-6581.	13.7	23	
25	Carbon nanofiber supported Mo2C catalysts for hydrodeoxygenation of guaiacol: The importance of the carburization process. Applied Catalysis B: Environmental, 2018, 239, 463-474.	20.2	84	
26	Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention. Applied Surface Science, 2017, 424, 101-110.	6.1	20	
27	Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol. Nanomaterials, 2017, 7, 447.	4.1	14	
28	Graphene quantum dots from fishbone carbon nanofibers. RSC Advances, 2016, 6, 48504-48514.	3.6	18	
29	Density Functional Investigation of the Inclusion of Gold Clusters on a CH ₃ S Self-Assembled Lattice on Au(111). Advances in Chemistry, 2016, 2016, 1-8.	1.1	1	
30	On the oxidation degree of few-layer graphene oxide sheets obtained from chemically oxidized multiwall carbon nanotubes. Carbon, 2015, 81, 405-417.	10.3	56	
31	Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: Effect of support functionalisation. Carbon, 2015, 81, 574-586.	10.3	36	
32	Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: Thermogravimetric analysis and scaling-up of Fe–Mo catalysts. International Journal of Hydrogen Energy, 2014, 39, 3698-3709.	7.1	77	
33	Carbon nanofibres coated with Ni decorated MoS2 nanosheets as catalyst for vacuum residue hydroprocessing. Applied Catalysis B: Environmental, 2014, 148-149, 357-365.	20.2	34	
34	Preparation of polymer composites using nanostructured carbon produced at large scale by catalytic decomposition of methane. Materials Chemistry and Physics, 2013, 137, 859-865.	4.0	6	
35	Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. Journal of Natural Gas Chemistry, 2012, 21, 367-373.	1.8	60	
36	Response to the comments on "Metallic and carbonaceous-based catalysts performance in the solar catalytic decomposition of methane for hydrogen and carbon production―by A. Rollinson. International Journal of Hydrogen Energy, 2012, 37, 14716-14717.	7.1	2	

#	Article	IF	CITATIONS
37	Metallic and carbonaceous –based catalysts performance in the solar catalytic decomposition of methane for hydrogen and carbon production. International Journal of Hydrogen Energy, 2012, 37, 9645-9655.	7.1	34