W Huberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784103/publications.pdf

Version: 2024-02-01

14	526	933447	1125743
papers	citations	h-index	g-index
14	14	14	651
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A benchmark study of numerical schemes for oneâ€dimensional arterial blood flow modelling. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02732.	2.1	144
2	A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications. International Journal for Numerical Methods in Biomedical Engineering, 2016, 32, e02755.	2.1	105
3	A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Medical Engineering and Physics, 2012, 34, 233-248.	1.7	77
4	A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior. Biomechanics and Modeling in Mechanobiology, 2016, 15, 279-291.	2.8	39
5	Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 1679-1704.	2.1	29
6	A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part A: Identification of most influential model parameters. Medical Engineering and Physics, 2013, 35, 810-826.	1.7	27
7	Application of an Adaptive Polynomial Chaos Expansion on Computationally Expensive Three-Dimensional Cardiovascular Models for Uncertainty Quantification and Sensitivity Analysis. Journal of Biomechanical Engineering, 2016, 138, .	1.3	26
8	Personalization of models with many model parameters: an efficient sensitivity analysis approach. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, .	2.1	25
9	A constitutive modeling interpretation of the relationship among carotid artery stiffness, blood pressure, and age in hypertensive subjects. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H568-H582.	3.2	24
10	A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part B: Identification of possible generic model parameters. Medical Engineering and Physics, 2013, 35, 827-837.	1.7	14
11	The impact of shape uncertainty on aorticâ€valve pressureâ€drop computations. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3518.	2.1	7
12	Global sensitivity analysis of a model for venous valve dynamics. Journal of Biomechanics, 2016, 49, 2845-2853.	2.1	5
13	Modeling regulation of vascular tone following muscle contraction: Model development, validation and global sensitivity analysis. Journal of Computational Science, 2018, 24, 143-159.	2.9	4
14	The Role of One-Dimensional Model-Generated Inter-Subject Variations in Systemic Properties on Wall Shear Stress Indices of Intracranial Aneurysms. IEEE Transactions on Biomedical Engineering, 2020, 67, 1030-1039.	4.2	0