Eric V Lonsdorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3784073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 2009, 7, 4-11.	4.0	1,809
2	A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics, 2006, 7, 510-523.	16.3	911
3	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	6.4	875
4	Where to put things? Spatial land management to sustain biodiversity and economic returns. Biological Conservation, 2008, 141, 1505-1524.	4.1	536
5	Modeling the status, trends, and impacts of wild bee abundance in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 140-145.	7.1	352
6	Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9471-9476.	7.1	311
7	PLANT–SOIL–MICROORGANISM INTERACTIONS: HERITABLE RELATIONSHIP BETWEEN PLANT GENOTYPE AND ASSOCIATED SOIL MICROORGANISMS. Ecology, 2008, 89, 773-781.	3.2	310
8	Modelling pollination services across agricultural landscapes. Annals of Botany, 2009, 103, 1589-1600.	2.9	309
9	CONSERVING SPECIES IN A WORKING LANDSCAPE: LAND USE WITH BIOLOGICAL AND ECONOMIC OBJECTIVES. , 2005, 15, 1387-1401.		255
10	Pesticides and pollinators: A socioecological synthesis. Science of the Total Environment, 2019, 662, 1012-1027.	8.0	130
11	Genetic structure of a foundation species: scaling community phenotypes from the individual to the region. Heredity, 2008, 100, 121-131.	2.6	88
12	County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis) Tj ETQq0 0 0 rg	3BT_/Overl	ock 10 Tf 50
13	Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory. Ecological Modelling, 2015, 316, 133-143.	2.5	73
14	Phylogeny in the Service of Ecological Restoration. American Journal of Botany, 2015, 102, 647-648.	1.7	59
15	Mapping the margin: comparing marginal values of tropical forest remnants for pollination services. Ecological Applications, 2013, 23, 1113-1123.	3.8	57
16	A Tool for Selecting Plants When Restoring Habitat for Pollinators. Conservation Letters, 2017, 10, 105-111.	5.7	56

17	Adaptive management in the U.S. National Wildlife Refuge System: Science-management partnerships for conservation delivery. Journal of Environmental Management, 2011, 92, 1395-1402.	7.8	52
18	Ecology and Economics of Using Native Managed Bees for Almond Pollination. Journal of Economic Entomology, 2018, 111, 16-25.	1.8	51

ERIC V LONSDORF

#	Article	IF	CITATIONS
19	Enhancing pollination supply in an urban ecosystem through landscape modifications. Landscape and Urban Planning, 2017, 162, 157-166.	7.5	45
20	Flowering resources distract pollinators from crops: Model predictions from landscape simulations. Journal of Applied Ecology, 2019, 56, 618-628.	4.0	44
21	A generalizable energeticsâ€based model of avian migration to facilitate continentalâ€scale waterbird conservation. Ecological Applications, 2016, 26, 1136-1153.	3.8	42
22	African apes coexisting with logging: Comparing chimpanzee (Pan troglodytes troglodytes) and gorilla (Gorilla gorilla gorilla) resource needs and responses to forestry activities. Biological Conservation, 2018, 218, 277-286.	4.1	37
23	Selecting cost-effective plant mixes to support pollinators. Biological Conservation, 2018, 217, 195-202.	4.1	34
24	Assessing urban ecosystem services provided by green infrastructure: Golf courses in the Minneapolis-St. Paul metro area. Landscape and Urban Planning, 2021, 208, 104022.	7.5	28
25	Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes. PLoS ONE, 2015, 10, e0142525.	2.5	26
26	A data management system for longâ€ŧerm natural resource monitoring and management projects with multiple cooperators. Wildlife Society Bulletin, 2015, 39, 464-471.	1.6	25
27	Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States. Ecosystem Services, 2021, 47, 101227.	5.4	25
28	Survival, abundance, and capture rate of eastern cottontail rabbits in an urban park. Urban Ecosystems, 2014, 17, 547-560.	2.4	23
29	A Retrospective Analysis of Factors Correlated to Chimpanzee (Pan troglodytes schweinfurthii) Respiratory Health at Gombe National Park, Tanzania. EcoHealth, 2011, 8, 26-35.	2.0	22
30	A Review of Options for Mitigating Take of Golden Eagles at Wind Energy Facilities. Journal of Raptor Research, 2017, 51, 319-333.	0.6	20
31	Crop pollination services. , 2011, , 168-187.		15
32	Modeling golden eagleâ€vehicle collisions to design mitigation strategies. Journal of Wildlife Management, 2018, 82, 1633-1644.	1.8	14
33	Sourcing native plants to support ecosystem function in different planting contexts. Restoration Ecology, 2019, 27, 470-476.	2.9	14
34	Do capuchin monkeys (Sapajus apella) prefer symmetrical face shapes?. Journal of Comparative Psychology (Washington, D C: 1983), 2017, 131, 73-77.	0.5	14
35	Modeling with uncertain science: estimating mitigation credits from abating lead poisoning in Golden Eagles. Ecological Applications, 2015, 25, 1518-1533.	3.8	13
36	PhragNet: crowdsourcing to investigate ecology and management of invasive Phragmites australis (common reed) in North America. Wetlands Ecology and Management, 2017, 25, 607-618.	1.5	13

ERIC V LONSDORF

#	Article	IF	CITATIONS
37	Scaleâ€dependent foraging tradeoff allows competitive coexistence. Oikos, 2018, 127, 1575-1585.	2.7	13
38	Rapid Assessment of Roadsides as Potential Habitat for Monarchs and Other Pollinators. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	11
39	Partitioning private and external benefits of crop pollination services. People and Nature, 2020, 2, 811-820.	3.7	11
40	The contribution of land cover change to the decline of honey yields in the Northern Great Plains. Environmental Research Letters, 2021, 16, 064050.	5.2	11
41	One year later: evaluation of PMC-recommended births and transfers. Zoo Biology, 2006, 25, 267-277.	1.2	8
42	Building resilience into agricultural pollination using wild pollinators. , 2019, , 109-134.		8
43	Differential response of nest predators to the presence of a decoy parent in artificial nests. Bird Study, 2012, 59, 96-101.	1.0	7
44	A Decision Support Tool for Adaptive Management of Native Prairie Ecosystems. Interfaces, 2016, 46, 334-344.	1.5	7
45	Invasion and succession change the functional traits of serpentine plant communities1,3. Journal of the Torrey Botanical Society, 2017, 144, 109.	0.3	7
46	Patch Aging and the S-Allee Effect: Breeding System Effects on the Demographic Response of Plants to Habitat Fragmentation. American Naturalist, 2007, 169, 383.	2.1	6
47	Effects of weather variation on waterfowl migration: Lessons from a continentalâ€scale generalizable avian movement and energetics model. Ecology and Evolution, 2022, 12, e8617.	1.9	6
48	Temperature-influenced energetics model for migrating waterfowl. Ecological Modelling, 2018, 378, 46-58.	2.5	5
49	Cooperatively improving tallgrass prairie with adaptive management. Ecosphere, 2020, 11, e03095.	2.2	5
50	Null models for population variation in morph frequencies in polymorphic damselflies. Animal Behaviour, 2007, 74, e1-e8.	1.9	3
51	Local adaptation and rapid evolution of aphids in response to genetic interactions with their cottonwood hosts. Ecology and Evolution, 2020, 10, 10532-10542.	1.9	2
52	Modeling Terrestrial Ecosystem Services. , 2013, , 347-361.		1
53	A generalizable energetics-based model of avian migration to facilitate continental-scale waterbird conservation. , 2015, , .		0