
Chao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3783958/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface engineering induced hierarchical porous Ni12P5-Ni2P polymorphs catalyst for efficient wide pH hydrogen production. Applied Catalysis B: Environmental, 2021, 282, 119609.	20.2	123
2	Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting. Chemical Engineering Journal, 2021, 420, 129686.	12.7	59
3	Metalâ€Organic Framework Derived Ni ₂ P/C Hollow Microspheres as Batteryâ€Type Electrodes for Batteryâ€Supercapacitor Hybrids. ChemElectroChem, 2019, 6, 5511-5518.	3.4	31
4	Easily prepared, high activity Ir–Ni oxide catalysts for water oxidation. Electrochemistry Communications, 2015, 60, 109-112.	4.7	27
5	Active, Simple Iridium–Copper Hydrous Oxide Electrocatalysts for Water Oxidation. Journal of Physical Chemistry C, 2017, 121, 5480-5486.	3.1	27
6	Simple Aqueous Preparation of High Activity and Stability NiFe Hydrous Oxide Catalysts for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 1106-1112.	6.7	24
7	Solvothermal preparation of nickel-iron phosphides hollow nanospheres derived from metal-organic frameworks for water oxidation reaction. Applied Surface Science, 2021, 540, 148336.	6.1	17
8	A simple preparation of Co _{0.} <scp>₇₅Fe₀<scp>_{.25}hydrous oxide nanoparticles as active electrocatalysts for water oxidation reaction. International Journal of Energy Research, 2020, 44, 7820-7830.</scp></scp>	4.5	16
9	Amorphous/Crystalline Heterostructured Nickel Phosphide Nanospheres for Electrocatalytic Water and Methanol Oxidation Reactions. Journal of Physical Chemistry C, 2021, 125, 21443-21452.	3.1	10
10	Construction of nickel- and iron-coordinated poly(5-amino-1,10-phenanthroline) film for electrocatalytic water oxidation reactions. Journal of Power Sources, 2021, 506, 230109.	7.8	4
11	Construction of iridium oxide nanoparticle modified indium tin oxide electrodes with polycarboxylic acids and pyrophosphoric acid and their application to water oxidation reactions. Electrochimica Acta, 2021, 389, 138683.	5.2	4
12	Ultrasmall iridium oxide nanoparticle incorporated nitrogen-doped carbon derived from the electropolymerized 1,10-phenanthroline-based molecules for water oxidation reactions. Journal of Alloys and Compounds, 2022, 918, 165523.	5.5	3