
Rigoberto Advincula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3783905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 2018, 20, 44-67.	1.7	768
2	3D Printing of Polymer Nanocomposites via Stereolithography. Macromolecular Materials and Engineering, 2017, 302, 1600553.	1.7	341
3	Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science, 2019, 98, 101162.	11.8	335
4	High performance polymer nanocomposites for additive manufacturing applications. Reactive and Functional Polymers, 2016, 103, 141-155.	2.0	321
5	3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Applied Materials & Interfaces, 2017, 9, 4015-4023.	4.0	314
6	On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films. Chemical Communications, 2015, 51, 2886-2889.	2.2	232
7	3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography. ACS Applied Materials & Interfaces, 2017, 9, 34314-34324.	4.0	210
8	3D-printing and advanced manufacturing for electronics. Progress in Additive Manufacturing, 2019, 4, 245-267.	2.5	188
9	Superhydrophobic Colloidally Textured Polythiophene Film as Superior Anticorrosion Coating. ACS Applied Materials & Interfaces, 2012, 4, 3169-3176.	4.0	172
10	High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability. ACS Applied Materials & Interfaces, 2017, 9, 10085-10093.	4.0	138
11	A Facile Synthesis Route to Thiol-Functionalized α,ï‰-Telechelic Polymers via Reversible Addition Fragmentation Chain Transfer Polymerization. Macromolecules, 2005, 38, 8597-8602.	2.2	134
12	Mechanically Robust, Ultraelastic Hierarchical Foam with Tunable Properties via 3D Printing. Advanced Functional Materials, 2018, 28, 1800631.	7.8	128
13	Tunable Protein and Bacterial Cell Adsorption on Colloidally Templated Superhydrophobic Polythiophene Films. Chemistry of Materials, 2012, 24, 870-880.	3.2	122
14	3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam. Advanced Functional Materials, 2019, 29, 1900469.	7.8	122
15	3D printing for membrane separation, desalination and water treatment. Applied Materials Today, 2020, 18, 100486.	2.3	122
16	Superhydrophobic Rubber-Modified Polybenzoxazine/SiO ₂ Nanocomposite Coating with Anticorrosion, Anti-Ice, and Superoleophilicity Properties. Industrial & Engineering Chemistry Research, 2017, 56, 1485-1497.	1.8	112
17	Superhydrophobic–Superoleophilic Polythiophene Films with Tunable Wetting and Electrochromism. Advanced Materials, 2011, 23, 3207-3213.	11.1	90
18	Inorganic–Organic Thiol–ene Coated Mesh for Oil/Water Separation. ACS Applied Materials & Interfaces, 2015, 7, 18566-18573.	4.0	89

#	Article	IF	CITATIONS
19	Reprocessable 3D-Printed Conductive Elastomeric Composite Foams for Strain and Gas Sensing. ACS Applied Polymer Materials, 2019, 1, 885-892.	2.0	87
20	Post-Processing of 3D-Printed Polymers. Technologies, 2021, 9, 61.	3.0	85
21	Smart cements and cement additives for oil and gas operations. Journal of Petroleum Science and Engineering, 2015, 129, 63-76.	2.1	84
22	Investigating Carbazole Jacketed Precursor Dendrimers:Â Sonochemical Synthesis, Characterization, and Electrochemical Crosslinking Properties. Journal of the American Chemical Society, 2007, 129, 12537-12548.	6.6	83
23	Nanostructuring polymers, colloids, and nanomaterials at the air–water interface through Langmuir and Langmuir–Blodgett techniques. Soft Matter, 2011, 7, 9829.	1.2	80
24	Distinct Chemical and Physical Properties of Janus Nanosheets. ACS Nano, 2017, 11, 7485-7493.	7.3	79
25	Additive manufacturing for COVID-19: Devices, materials, prospects, and challenges. MRS Communications, 2020, 10, 413-427.	0.8	74
26	On the progress of 3D-printed hydrogels for tissue engineering. MRS Communications, 2021, 11, 539-553.	0.8	71
27	Hybrid organic–inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Transactions, 2006, , 2778-2784.	1.6	70
28	3D Printing of a Robust Polyamideâ€12â€Carbon Black Composite via Selective Laser Sintering: Thermal and Electrical Conductivity. Macromolecular Materials and Engineering, 2019, 304, 1800718.	1.7	67
29	Accommodating volume change and imparting thermal conductivity by encapsulation of phase change materials in carbon nanoparticles. Journal of Materials Chemistry A, 2018, 6, 2461-2467.	5.2	61
30	Stimuli-Responsive Polymers and their Potential Applications in Oil-Gas Industry. Polymer Reviews, 2015, 55, 706-733.	5.3	60
31	Novel anti-corrosion coatings from rubber-modified polybenzoxazine-based polyaniline composites. Applied Surface Science, 2017, 422, 162-171.	3.1	60
32	Utilizing Viral Nanoparticle/Dendron Hybrid Conjugates in Photodynamic Therapy for Dual Delivery to Macrophages and Cancer Cells. Bioconjugate Chemistry, 2016, 27, 1227-1235.	1.8	53
33	Role of Surface Tension in Gas Nanobubble Stability Under Ultrasound. ACS Applied Materials & Interfaces, 2018, 10, 9949-9956.	4.0	52
34	Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. MRS Communications, 2019, 9, 1267-1283.	0.8	52
35	4D Printing via an Unconventional Fused Deposition Modeling Route to High-Performance Thermosets. ACS Applied Materials & Interfaces, 2020, 12, 50052-50060.	4.0	52
36	3D printing of biomedically relevant polymer materials and biocompatibility. MRS Communications, 2021, 11, 197-212.	0.8	50

#	Article	IF	CITATIONS
37	High performance polymers for oil and gas applications. Reactive and Functional Polymers, 2021, 162, 104878.	2.0	50
38	Reversible Superhydrophilicity and Superhydrophobicity on a Lotus-Leaf Pattern. ACS Applied Materials & Interfaces, 2014, 6, 22666-22672.	4.0	49
39	Plastic Metal-Free Electric Motor by 3D Printing of Graphene-Polyamide Powder. ACS Applied Energy Materials, 2018, 1, 1726-1733.	2.5	49
40	A Review on Rubber-Enhanced Polymeric Materials. Polymer Reviews, 2017, 57, 311-338.	5.3	47
41	Hybrid Semiconductor Nanoparticles: π-Conjugated Ligands and Nanostructured Films. Chemistry of Materials, 2011, 23, 4273-4294.	3.2	44
42	Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites. MRS Communications, 2019, 9, 209-217.	0.8	44
43	Highly Recyclable, Mechanically Isotropic and Healable 3D-Printed Elastomers via Polyurea Vitrimers. , 2021, 3, 1095-1103.		44
44	Facile Preparation of Photocurable Siloxane Composite for 3D Printing. Macromolecular Materials and Engineering, 2017, 302, 1600477.	1.7	38
45	On the thermal processing and mechanical properties of 3D-printed polyether ether ketone. MRS Communications, 2019, 9, 1046-1052.	0.8	36
46	Selective mono-facial modification of graphene oxide nanosheets in suspension. Chemical Communications, 2016, 52, 288-291.	2.2	34
47	Superoleophilic and under-oil superhydrophobic organogel coatings for oil and water separation. Progress in Organic Coatings, 2018, 115, 122-129.	1.9	34
48	On the enhanced corrosion resistance of elastomer-modified polybenzoxazine/graphene oxide nanocomposite coatings. Reactive and Functional Polymers, 2018, 123, 10-19.	2.0	33
49	Photoreduction of Graphene Oxide and Photochemical Synthesis of Graphene–Metal Nanoparticle Hybrids by Ketyl Radicals. ACS Applied Materials & Interfaces, 2017, 9, 24887-24898.	4.0	32
50	Hybrid CdSe Nanoparticle–Carbazole Dendron Boxes: Electropolymerization and Energy‶ransfer Mechanism Shift. Advanced Functional Materials, 2008, 18, 2071-2078.	7.8	31
51	A Trefoil Knotted Polymer Produced through Ring Expansion. Angewandte Chemie - International Edition, 2015, 54, 5127-5131.	7.2	31
52	Simultaneous Reduction and Functionalization of Graphene Oxide via Ritter Reaction. ACS Applied Materials & Interfaces, 2017, 9, 14265-14272.	4.0	31
53	Grafted Carbazole-Assisted Electrodeposition of Graphene Oxide. ACS Applied Materials & Interfaces, 2015, 7, 10266-10274.	4.0	30
54	Super-Anticorrosive Materials Based on Bifunctionalized Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2020, 12, 45254-45265.	4.0	30

#	Article	IF	CITATIONS
55	On the additive manufacturing (3D printing) of viscoelastic materials and flow behavior: From composites to food manufacturing. Additive Manufacturing, 2021, 45, 102043.	1.7	30
56	A Dual Approach in Direct Ink Writing of Thermally Cured Shape Memory Rubber Toughened Epoxy. ACS Applied Polymer Materials, 2020, 2, 5492-5500.	2.0	27
57	Electroâ€Copolymerization of Layerâ€byâ€Layer Deposited Polythiophene and Polycarbazole Precursor Ultrathin Films. Macromolecular Rapid Communications, 2007, 28, 1522-1527.	2.0	26
58	On the Effect of Ultralow Loading of Microwave-Assisted Bifunctionalized Graphene Oxide in Stereolithographic 3D-Printed Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 49061-49072.	4.0	26
59	Catenated Poly(ε-caprolactone) and Poly(<scp>l</scp> -lactide) via Ring-Expansion Strategy. Macromolecules, 2015, 48, 3825-3833.	2.2	25
60	Cyclic poly(vinylcarbazole) via ring-expansion polymerization-RAFT (REP-RAFT). Reactive and Functional Polymers, 2014, 80, 33-39.	2.0	24
61	3D Printed Injection Molds Using Various 3D Printing Technologies. Materials Science Forum, 0, 1005, 150-156.	0.3	24
62	Graphene oxide bifunctionalized with NH2/NH3+ and their outstanding-performance against corrosion. Applied Surface Science, 2021, 561, 150048.	3.1	24
63	Hybrid Goldâ€Nanoparticleâ€Cored Conjugated Thiophene Dendrimers: Synthesis, Characterization, and Energyâ€Transfer Studies. Chemistry - A European Journal, 2011, 17, 8929-8940.	1.7	23
64	Electropolymerized and polymer grafted superhydrophobic, superoleophilic, and hemi-wicking coatings. Journal of Materials Chemistry, 2012, 22, 11025.	6.7	23
65	Redox nanoreactor dendrimer boxes: in situ hybrid gold nanoparticles via terthiophene and carbazole peripheral dendrimer oxidation. Soft Matter, 2010, 6, 5316.	1.2	21
66	Polymer catenanes via a supramolecularly templated ATRP initiator. Chemical Communications, 2011, 47, 9173.	2.2	21
67	A supramolecularly templated catenane initiator and a controlled ring expansion strategy. Chemical Communications, 2012, 48, 12094.	2.2	20
68	Photoswitchable Nanocarrier with Reversible Encapsulation Properties. ACS Macro Letters, 2015, 4, 58-62.	2.3	19
69	The potential of additively manufactured membranes for selective separation and capture of CO2. MRS Communications, 2021, 11, 391-401.	0.8	18
70	Mechanically and Thermally Enhanced 3D-Printed Photocurable Polymer Nanocomposites Containing Functionalized Chitin Nanowhiskers by Stereolithography. ACS Applied Polymer Materials, 2022, 4, 2513-2526.	2.0	18
71	Synthesizing a Trefoil Knotted Block Copolymer via Ring-Expansion Strategy. Macromolecules, 2017, 50, 1473-1481.	2.2	15
72	3D printing of metals using biodegradable cellulose hydrogel inks. Additive Manufacturing, 2021, 48, 102380.	1.7	15

5

#	Article	IF	CITATIONS
73	Additively manufactured high-performance polymeric materials and their potential use in the oil and gas industry. MRS Communications, 2021, 11, 701-715.	0.8	15
74	Star-like copolymer stabilized noble-metal nanoparticle powders. Nanoscale, 2016, 8, 7435-7442.	2.8	14
75	Tunable electroluminescence properties in CdSe/PVK guest–host based light-emitting devices. Physical Chemistry Chemical Physics, 2014, 16, 8589.	1.3	13
76	Polymeric catenanes synthesized via "click―chemistry and atom transfer radical coupling. Chemical Communications, 2015, 51, 7528-7531.	2.2	13
77	Musselâ€Inspired Hydrogel Composite with Multiâ€Stimuli Responsive Behavior. Macromolecular Materials and Engineering, 2019, 304, 1800720.	1.7	13
78	Characterize traction–separation relation and interfacial imperfections by data-driven machine learning models. Scientific Reports, 2021, 11, 14330.	1.6	13
79	Advancing flexible electronics and additive manufacturing. Japanese Journal of Applied Physics, 2022, 61, SE0803.	0.8	13
80	Graphene Oxide–Poly(ethylene glycol) methyl ether methacrylate Nanocomposite Hydrogels. Macromolecular Chemistry and Physics, 2016, 217, 101-107.	1.1	12
81	On the optimized 3D printing and post-processing of PETG materials. MRS Communications, 2022, 12, 381-387.	0.8	12
82	Electrospinning Superhydrophobic and Antibacterial PS/MWNT Nanofibers onto Multilayer Gas Barrier Films. Macromolecular Symposia, 2017, 374, 1600138.	0.4	11
83	On the Use of Surfactantâ€Complexed Chitosan for Toughening 3D Printed Polymethacrylate Composites. Macromolecular Materials and Engineering, 2021, 306, .	1.7	11
84	Plasmonic Retrofitting of Membrane Materials: Shifting from Selfâ€Regulation to Onâ€Command Control of Fluid Flow. Advanced Materials, 2018, 30, 1707598.	11.1	10
85	The pH dependent reactions of graphene oxide with small molecule thiols. RSC Advances, 2018, 8, 18388-18395.	1.7	9
86	One‣tep Fabrication of Superhydrophobic/Superoleophilic Electrodeposited Polythiophene for Oil and Water Separation. Macromolecular Materials and Engineering, 2019, 304, 1800722.	1.7	9
87	On the Formation and Electropolymerization of a Star Copolymer With Peripheral Carbazoles. Macromolecular Chemistry and Physics, 2013, 214, 386-395.	1.1	8
88	Electrochemical fabrication of graphene nanomesh via colloidal templating. Chemical Communications, 2015, 51, 7629-7632.	2.2	8
89	Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry. Polymer International, 2017, 66, 1252-1258.	1.6	8
90	3D-printing methacrylate/chitin nanowhiskers composites via stereolithography: Mechanical and thermal properties. Materials Today: Proceedings, 2020, 33, 1819-1824.	0.9	8

#	Article	IF	CITATIONS
91	Capsulation of carbon nanotubes on top of colloidally templated and electropolymerized polythiophene arrays. Chemical Communications, 2011, 47, 8871.	2.2	7
92	Superhydrophobic μ-pillars <i>via</i> simple and scalable SLA 3D-printing: the stair-case effect and their wetting models. Soft Matter, 2021, 17, 7524-7531.	1.2	7
93	Core–Shell Gold Nanoparticle-Star Copolymer Composites with Gradient Transfer and Transport Properties: Toward Electro-Optical Sensors and Catalysis. ACS Applied Nano Materials, 2021, 4, 1394-1400.	2.4	6
94	Highly efficient Oil/Water and brine Separations: Superhydrophobic hybrid isobornyl methacrylate coatings. Separation and Purification Technology, 2022, 278, 119365.	3.9	6
95	Polymer Nanosheet Containing Starâ€Like Copolymers: A Novel Scalable Controlled Release System. Small, 2018, 14, e1800115.	5.2	5
96	Continuous Flow Fabrication of Block Copolymer–Grafted Silica Microâ€Particles in Environmentally Friendly Water/Ethanol Media. Macromolecular Materials and Engineering, 2019, 304, 1800451.	1.7	5
97	Fluorineâ€Free Superhydrophobic Coatings: Rapid Fabrication and Highly Efficient Oil/Water Separation. Macromolecular Materials and Engineering, 2020, 305, 2000400.	1.7	5
98	Harnessing autocatalytic reactions in polymerization and depolymerization. MRS Communications, 2021, 11, 377-390.	0.8	4
99	3D Printed Parahydrophobic Surfaces as Multireaction Platforms. Langmuir, 0, , .	1.6	3
100	Effect of the surfactant pluronic on the stability of lipid-stabilized perfluorocarbon nanobubbles. , 2017, , .		2
101	Nanostructured Conjugated Polymer Network Ultrathin Films and Coatings Using the Precursor Polymer Approach. ACS Symposium Series, 2009, , 51-61.	0.5	1
102	Hybrid CdSe–dendron nanoparticle and polymer blend knodels at the interface. Soft Matter, 2011, 7, 5124.	1.2	1
103	Highly thermally stable copolymers of epoxy and trifunctional polybenzoxazine. Materials Today Communications, 2022, 30, 102988.	0.9	1
104	3D-Printing for Cube Satellites (CubeSats): Philippines†Perspectives. , 0, 1, 13-27.		1
105	Nanostructured Electrooptically Active Smart Coatings Based on Conjugated Polymer Networks: Precursor Polymer Approach. Devices, and Nanopatterning, ACS Symposium Series, 2009. , 158-177.	0.5	0