Yanzhong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3783339/publications.pdf

Version: 2024-02-01

218677 276875 65 1,889 26 41 h-index citations g-index papers 68 68 68 1675 times ranked docs citations citing authors all docs

#	Article	lF	CITATIONS
1	Selective Preparation of Pyridines, Pyridones, and Iminopyridines from Two Different Alkynes via Azazirconacycles. Journal of the American Chemical Society, 2002, 124, 5059-5067.	13.7	182
2	Carbonâ^'Carbon Bond Formation Reaction of Zirconacyclopentadienes with Alkynes in the Presence of Ni(II)-complexes. Journal of the American Chemical Society, 1999, 121, 11093-11100.	13.7	123
3	Iron-Catalyzed Cascade Areneâ^'Aldehyde Addition/Cyclizations for the Highly Efficient Synthesis of Xanthenes and Its Analogous: Observation of a Câ^'C Bond Cleavage in Indole-Based Triarylmethanes. Journal of Organic Chemistry, 2009, 74, 6797-6801.	3.2	90
4	Ironâ€Catalyzed Regioselective Hydroaryloxylation of CC Triple Bonds: An Efficient Synthesis of $2 < i > H < /i > $ â€ 1 â€Benzopyran Derivatives. Advanced Synthesis and Catalysis, 2009, 351, 2599-2604.	4.3	67
5	Copper-Catalyzed Oxidative Dearomatization/Spirocyclization of Indole-2-Carboxamides: Synthesis of 2-Spiro-pseudoindoxyls. Organic Letters, 2016, 18, 6124-6127.	4.6	65
6	Copper-Catalyzed Synthesis of Substituted Quinolines via C–N Coupling/Condensation from <i>ortho</i> -Acylanilines and Alkenyl Iodides. Journal of Organic Chemistry, 2015, 80, 1275-1278.	3.2	61
7	New domino approach for the synthesis of 2,3-disubstituted benzo[b]furans via copper-catalyzed multi-component coupling reactions followed by cyclization. Tetrahedron Letters, 2009, 50, 2353-2357.	1.4	60
8	Lewis Acid-Catalyzed Cyclization of Enaminones with Propargylic Alcohols: Regioselective Synthesis of Multisubstituted 1,2-Dihydropyridines. Journal of Organic Chemistry, 2013, 78, 5731-5736.	3.2	57
9	Insertion of Isolated Alkynes into Carbon–Carbon σâ€Bonds of Unstrained Cyclic βâ€Ketoesters via Transitionâ€Metalâ€Free Tandem Reactions: Synthesis of Mediumâ€6ized Ring Compounds. Chemistry - A European Journal, 2016, 22, 17936-17939.	3.3	56
10	Efficient Synthesis of 3-lodoindenes via Lewis-Acid Catalyzed Friedelâ^'Crafts Cyclization of Iodinated Allylic Alcohols. Journal of Organic Chemistry, 2008, 73, 3958-3960.	3.2	55
11	Acidâ€Catalyzed Cascade Reactions of Enaminones with Aldehydes: C–H Functionalization To Afford 1,4â€Dihydropyridines. European Journal of Organic Chemistry, 2010, 2010, 4189-4193.	2.4	55
12	ZnCl ₂ -catalyzed chemoselective cascade reactions of enaminones with 2-furylcarbinols: a versatile process for the synthesis of cyclopenta[b]pyrrole derivatives. Chemical Communications, 2014, 50, 2164-2166.	4.1	52
13	Transition-Metal-Free Ring Expansion Reactions of Indene-1,3-dione: Synthesis of Functionalized Benzoannulated Seven-Membered Ring Compounds. Organic Letters, 2018, 20, 1744-1747.	4.6	50
14	Iron-Catalyzed, Microwave-Promoted, One-Pot Synthesis of 9-Substituted Xanthenes by a Cascade Benzylationâ [^] Cyclization Process. Organic Letters, 2010, 12, 100-103.	4.6	49
15	Pd/Cu-catalyzed cascade Sonogashira coupling/cyclization reactions to highly substituted 3-formyl furans. Organic and Biomolecular Chemistry, 2011, 9, 1342.	2.8	49
16	Iron-catalyzed cascade reaction of ynone with o-aminoaryl compounds: a Michael addition–cyclization approach to 3-carbonyl quinolines. Tetrahedron Letters, 2011, 52, 530-533.	1.4	46
17	Baseâ€Promoted Tandem Reaction Involving Insertion into Carbon–Carbon σâ€Bonds: Synthesis of Xanthone and Chromone Derivatives. Chemistry - A European Journal, 2016, 22, 12655-12659.	3.3	46
18	Silver-catalyzed cascade reaction of o-aminoaryl compounds with alkynes: an aniline mediated synthesis of 2-substituted quinolines. Tetrahedron Letters, 2011, 52, 1108-1111.	1.4	45

#	Article	IF	Citations
19	Ironâ€Catalyzed Crossâ€Coupling Reactions of Terminal Alkynes with Vinyl Iodides. Advanced Synthesis and Catalysis, 2009, 351, 1263-1267.	4.3	43
20	Copper-catalyzed synthesis of five-membered heterocycles via double C–N bond formation: an efficient synthesis of pyrroles, dihydropyrroles, and carbazoles. Tetrahedron, 2009, 65, 8961-8968.	1.9	36
21	Metal/Benzoyl Peroxide (BPO)-Controlled Chemoselective Cycloisomerization of $(\langle i \rangle o < i \rangle -Alkynyl)$ phenyl Enaminones: Synthesis of $\hat{l}\pm$ -Naphthylamines and Indeno $[1,2-\langle i \rangle c < i \rangle]$ pyrrolones. Organic Letters, 2016, 18, 5150-5153.	4.6	36
22	Base-mediated insertion reaction of alkynes into carbon $\hat{\mathbf{a}}$ carbon $\hat{\mathbf{l}}_f$ -bonds of ethanones: synthesis of hydroxydienone and chromone derivatives. Organic and Biomolecular Chemistry, 2017, 15, 2497-2500.	2.8	33
23	Baseâ€Promoted Tandem Reaction towards Conjugated Dienone or Chromone Derivatives with a Cyano Group: Insertion of Alkynes into C–C σâ€Bonds of 3â€Oxopropanenitriles. Advanced Synthesis and Catalysis, 2017, 359, 3079-3084.	4.3	29
24	Transition-Metal-Free Aminoacylation of Ynones with Amides: Synthesis of 3-Carbonyl-4-quinolinones or Functionalized Enaminones. Organic Letters, 2018, 20, 3907-3910.	4.6	29
25	LDA-Promoted Synthesis of 3-Amino Furans by Selective Lithiation of Enaminones. Journal of Organic Chemistry, 2015, 80, 12641-12645.	3.2	28
26	Transition-metal-free insertion reactions of alkynes into the Câ \in "N $\ddot{l}f$ -bonds of imides: synthesis of substituted enamides or chromones. Chemical Communications, 2018, 54, 6192-6195.	4.1	28
27	Sequential C–C σ-Bond Cleavage/(sp ²) C–O Bond Formation via C–H Functionalization toward Pyranoindolones Fused with Medium-Sized Rings. Organic Letters, 2018, 20, 6130-6134.	4.6	25
28	Controllable α- or β-Functionalization of α-Diazoketones with Aromatic Amides via Cobalt-Catalyzed C–H Activation: A Regioselective Approach to Isoindolinones. Organic Letters, 2019, 21, 6264-6269.	4.6	21
29	Selective Insertion of Alkynes into Câ \in "C Ï f Bonds of Indolin-2-ones: Transition-Metal-Free Ring Expansion Reactions to Seven-Membered-Ring Benzolactams or Chromone Derivatives. Organic Letters, 2020, 22, 155-159.	4.6	21
30	Gold-catalyzed chemo- and diastereoselective C(sp ²)â€"H functionalization of enaminones for the synthesis of pyrrolo[3,4-c]-quinolin-1-one derivatives. Organic and Biomolecular Chemistry, 2016, 14, 2177-2181.	2.8	20
31	Efficient stereoselective synthesis of benzoxazines via copper-catalyzed three-component coupling reactions. Tetrahedron Letters, 2009, 50, 57-59.	1.4	19
32	Merging base-promoted C–C bond cleavage and iron-catalyzed skeletal rearrangement involving C–C/C–H bond activation: synthesis of highly functionalized carbazoles. Chemical Communications, 2018, 54, 11009-11012.	4.1	19
33	Tertiary amine self-catalyzed intramolecular Csp3–H functionalization with in situ generated allenes for the formation of 3-alkenyl indolines. Chemical Communications, 2017, 53, 3721-3724.	4.1	18
34	Chemoselective N–H or C-2 Arylation of Indole-2-carboxamides: Controllable Synthesis of Indolo[1,2- <i>a</i>]quinoxalin-6-ones and 2,3′-Spirobi[indolin]-2′-ones. Organic Letters, 2018, 20, 5251-5255.	4.6	18
35	Palladium-Catalyzed Dual C(sp ²)–H Functionalization of Indole-2-carboxamides Involving a 1,2-Acyl Migration: A Synthesis of Indolo[3,2- <i>c</i> jquinolinones. Organic Letters, 2018, 20, 5696-5699.	4.6	17
36	Synthesis of cyano-substituted carbazoles <i>via</i> successive C–C/C–H cleavage. Organic and Biomolecular Chemistry, 2019, 17, 958-965.	2.8	15

#	Article	IF	Citations
37	Synthesis of Spiro[5.n (n=6–8)]heterocycles through Successive Ringâ€Expansion/Indole Câ€2 Functionalization. Advanced Synthesis and Catalysis, 2020, 362, 1298-1302.	4.3	15
38	Palladium atalyzed Allenylation/Intramolecular Diels–Alder Reaction of Furans with Propargyl Carboxylates for the Synthesis of Polycyclic Compounds. European Journal of Organic Chemistry, 2014, 2014, 3556-3560.	2.4	14
39	Copper-catalyzed synthesis of 1,2,4-trisubstituted pyrroles via cascade reactions of aryloxy-enynes with amines. RSC Advances, 2013, 3, 22872.	3.6	13
40	Baseâ€Promoted Approach to Highly Functionalized Conjugated Dienes through Enamine Migration. European Journal of Organic Chemistry, 2015, 2015, 7984-7991.	2.4	13
41	Transition-metal-free C–C σ-bond activation of α-aryl ketones and subsequent Zn-catalyzed intramolecular cyclization: synthesis of tetrasubstituted furans. Organic and Biomolecular Chemistry, 2019, 17, 2725-2733.	2.8	13
42	Silver-Mediated $[2+2+1]$ Cyclization Reaction of Diynes with Elemental Selenium/Sulfur To Synthesize 3,4-Substituted Cyclopenta[<i>c</i>) selenophenes/Cyclopenta[<i>c</i>) thiophenes. Organic Letters, 2021, 23, 5911-5916.	4.6	13
43	Selective Synthesis of Pyrano[3,2- <i>b</i>) indoles or Cyclopenta[<i>b</i>) indoles Tethered with Medium-Sized Rings via Cascade C–C σ-Bond Cleavage and C–H Functionalization. Journal of Organic Chemistry, 2021, 86, 683-692.	3.2	12
44	Selective synthesis of pyrrolo[1,2-a]azepines or 4,6-dicarbonyl indoles via tandem reactions of alkynones with pyrrole derivatives. Organic and Biomolecular Chemistry, 2017, 15, 6328-6332.	2.8	11
45	Synthesis of Aza-Eight-Membered Ring-Fused Indolines Initiated by Zn-Catalyzed C2 Alkylation of Indoles and Subsequent Base-Promoted Ring Expansion. Organic Letters, 2020, 22, 6532-6536.	4.6	11
46	Straightforward Stereoselective Synthesis of Seven-Membered Oxa-Bridged Rings through <i>In Situ</i> Generated Cycloheptenol Derivatives. Journal of Organic Chemistry, 2021, 86, 12956-12963.	3.2	11
47	Brønsted-Acid-Promoted Selective C2–N1 Ring-Expansion Reaction of Indoles toward Cyclopenta[<i>b</i>]quinolines. Organic Letters, 2022, 24, 966-970.	4.6	10
48	Cobalt-catalyzed C H activation of N-carbamoyl indoles or benzamides with maleimides: Synthesis of imidazo[1,5-a]indole- or isoindolone-incorporated spirosuccinimides. Tetrahedron Letters, 2021, 70, 152872.	1.4	9
49	Synthesis of Polycyclic Benzo[<i>b</i>]indolo[3,2,1- <i>de</i>]acridines via Sequential Allenylation, Diels–Alder Cyclization, and Hydrogen Migration Reaction. Journal of Organic Chemistry, 2017, 82, 11198-11205.	3.2	8
50	Pdâ€Catalyzed Câ€H/Nâ€H Arylation: Oneâ€Pot Synthesis of Indolo[1, 2â€ <i>f</i> jphenanthridines. ChemistrySelect, 2018, 3, 456-460.	1.5	8
51	Atom-Economic Synthesis of Highly Functionalized Bridged Ring Systems Initiated by Ring Expansion of Indene-1,3-dione. Journal of Organic Chemistry, 2021, 86, 6755-6764.	3.2	8
52	Iron-catalyzed one-pot reactions of o-aryloxybenzaldehydes to xanthones. Science Bulletin, 2012, 57, 2364-2367.	1.7	7
53	I ₂ -Catalyzed Carbonylation of α-Methylene Ketones to Synthesize 1,2-Diaryl Diketones and Antiviral Quinoxalines in One Pot. ACS Omega, 2022, 7, 1380-1394.	3.5	7
54	Cobalt-catalyzed regioselective syntheses of indeno $[2,1-<>] pyridines from nitriles and diynes bearing propargyl fragments. Organic and Biomolecular Chemistry, 2018, 16, 8761-8768.$	2.8	6

#	Article	IF	CITATIONS
55	Controllable synthesis of pyrido[2,3- <i>b</i>]indol-4-ones or indolo[3,2- <i>b</i>]quinolines <i>via</i> formal intramolecular C(sp ²)–H functionalization. Organic and Biomolecular Chemistry, 2019, 17, 9960-9965.	2.8	6
56	Palladiumâ€Catalyzed Allenylation/6Ï€â€Electrocyclization and 1,3â€Hydrogen Migration: an Access to Naphtho[1,2â€ <i>b</i>]furans. European Journal of Organic Chemistry, 2020, 2020, 98-102.	2.4	5
57	Synthesis of indoline-fused eight-membered azaheterocycles through Zn-catalyzed dearomatization of indoles and subsequent base-promoted C–C activation. Organic and Biomolecular Chemistry, 2020, 18, 6916-6926.	2.8	5
58	Cascade C–N bond cleavage of amides/intramolecular amination reactions: an atom economical way to α-cabolin-4-ones. Organic Chemistry Frontiers, 2021, 8, 579-583.	4.5	5
59	Copper-Catalyzed Selective Synthesis of Highly Substituted Pyridones by the Reaction of Enaminones with Alkynes. Synthesis, 2012, 44, 3301-3306.	2.3	4
60	Synthesis of 1-Alkyl-3-(2-oxo-2-aryl/alkyl-ethyl)indolin-2-ones through Gold/BrÃ,nsted Acid Relay Actions: Observation of Selective C=C Bond Cleavage of Enaminones. Synthesis, 2017, 49, 3609-3618.	2.3	4
61	Difunctionalization of Alkynones by Base-Mediated Reaction with $\hat{l}\pm,\hat{l}\pm$ -Dithioketones. Organic Letters, 2021, 23, 5339-5343.	4.6	4
62	Regioselective Synthesis of Tetrasubstituted Benzenes via Co-Catalyzed Cycloaddition of Alkynyl Ketones and 2-Acetylpyridines. Journal of Organic Chemistry, 2021, 86, 12158-12167.	3.2	2
63	Stereoselective synthesis of 1,3,5-trienes from alkynones and allyl carbonyl compounds through C–C If-bond cleavage under transition-metal-free conditions. Organic Chemistry Frontiers, 2022, 9, 3354-3359.	4.5	1
64	Transition-metal-free insertion of alkynes into the Câ \in "C Ï f -bond of cyclic Î 2 -keto sulfones: an atom-economical way to medium-size-ring sulfonyl derivatives. New Journal of Chemistry, 0, , .	2.8	1
65	FeCl 3 â€Catalyzed Highly Diastereoselective Synthesis of Polyhydrobenzo[a]acridinones. Asian Journal of Organic Chemistry, 0, , .	2.7	0