
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3782749/publications.pdf Version: 2024-02-01

7ньшы Ц

#	Article	IF	CITATIONS
1	Comparative study of metal oxides and phosphate modification with different mechanisms over g-C3N4 for visible-light photocatalytic degradation of metribuzin. Rare Metals, 2022, 41, 155-165.	3.6	50
2	Interface Modulation of FePc/Porous Ti(HPO ₄) ₂ Zâ€Scheme Heterojunctions with Ultrafine Ag for Efficiently Photocatalytic CO Oxidation. Small Structures, 2022, 3, .	6.9	9
3	N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation. Nanomaterials, 2022, 12, 1564.	1.9	8
4	Synthesis of mixed-valence Cu phthalocyanine/graphene/g-C ₃ N ₄ ultrathin heterojunctions as efficient photocatalysts for CO ₂ reduction. Catalysis Science and Technology, 2022, 12, 4817-4825.	2.1	6
5	Synergetic Subnano Ni―and Mnâ€Oxo Clusters Anchored by Chitosan Oligomers on 2D g 3 N 4 Boost Photocatalytic CO 2 Reduction. Solar Rrl, 2021, 5, 2000472.	3.1	20
6	Au-Modulated Z-Scheme CuPc/BiVO ₄ Nanosheet Heterojunctions toward Efficient CO ₂ Conversion under Wide-Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 2021, 9, 2400-2408.	3.2	20
7	Controlled Construction of Copper Phthalocyanine/αâ€Fe ₂ O ₃ Ultrathin Sâ€Scheme Heterojunctions for Efficient Photocatalytic CO ₂ Reduction under Wide Visibleâ€Light Irradiation. Small Science, 2021, 1, 2100050.	5.8	34
8	Energy Platform for Directed Charge Transfer in the Cascade Zâ€Scheme Heterojunction: CO ₂ Photoreduction without a Cocatalyst. Angewandte Chemie, 2021, 133, 21074-21082.	1.6	23
9	Energy Platform for Directed Charge Transfer in the Cascade Zâ€Scheme Heterojunction: CO ₂ Photoreduction without a Cocatalyst. Angewandte Chemie - International Edition, 2021, 60, 20906-20914.	7.2	132
10	Solar-Driven Lignin Oxidation via Hydrogen Atom Transfer with a Dye-Sensitized TiO ₂ Photoanode. ACS Energy Letters, 2020, 5, 777-784.	8.8	56
11	Improved Photocatalytic Activity of Porous In2O3 by co-Modifying Nanosized CuO and Ag with Synergistic Effects. Chemical Research in Chinese Universities, 2020, 36, 1116-1121.	1.3	7
12	Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Research, 2020, 13, 1668-1676.	5.8	20
13	Ultrafine SnO ₂ /010 Facet-Exposed BiVO ₄ Nanocomposites as Efficient Photoanodes for Controllable Conversion of 2,4-Dichlorophenol via a Preferential Dechlorination Path. ACS Applied Materials & Interfaces, 2020, 12, 28264-28272.	4.0	19
14	Decoupling and Coupling of the Host–Dopant Interaction by Manipulating Dopant Movement in Core/Shell Quantum Dots. Journal of Physical Chemistry Letters, 2020, 11, 5992-5999.	2.1	18
15	Visible-light induced disproportionation of pyrrole derivatives for photocatalyst-free aryl halides reduction. Green Chemistry, 2020, 22, 1911-1918.	4.6	24
16	Innentitelbild: Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer (Angew. Chem. 32/2019). Angewandte Chemie, 2019, 131, 10878-10878.	1.6	0
17	Improved Photoactivities of Largeâ€surfaceâ€area g ₃ N ₄ for CO ₂ Conversion by Controllably Introducing Co―and Niâ€Species to Effectively Modulate Photogenerated Charges. ChemCatChem, 2019, 11, 6282-6287.	1.8	15
18	Review on Photogenerated Hole Modulation Strategies in Photoelectrocatalysis for Solar Fuel Production. ChemCatChem, 2019, 11, 5875-5884.	1.8	17

#	Article	IF	CITATIONS
19	Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie, 2019, 131, 10989-10994.	1.6	44
20	Dimensionâ€Matched Zinc Phthalocyanine/BiVO ₄ Ultrathin Nanocomposites for CO ₂ Reduction as Efficient Wideâ€Visibleâ€Lightâ€Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie - International Edition, 2019, 58, 10873-10878.	7.2	168
21	Improved visible-light photoactivities of porous LaFeO ₃ by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catalysis Science and Technology, 2019, 9, 3149-3157.	2.1	40
22	Exciton Energy Shifts and Tunable Dopant Emission in Manganese-Doped Two-Dimensional CdS/ZnS Core/Shell Nanoplatelets. Chemistry of Materials, 2019, 31, 2516-2523.	3.2	48
23	Review of strategies for the fabrication of heterojunctional nanocomposites as efficient visible-light catalysts by modulating excited electrons with appropriate thermodynamic energy. Journal of Materials Chemistry A, 2019, 7, 10879-10897.	5.2	98
24	Photocatalytic Hydrogen Evolution: Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration (Adv. Mater. 7/2019). Advanced Materials, 2019, 31, 1970048.	11.1	1
25	Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. Advanced Materials, 2019, 31, e1804872.	11.1	55
26	Synthesis of Silicateâ€Bridged Heterojunctional SnO ₂ /BiVO ₄ Nanoplates as Efficient Photocatalysts to Convert CO ₂ and Degrade 2,4â€Dichlorophenol. Particle and Particle Systems Characterization, 2018, 35, 1700320.	1.2	13
27	Photoelectrochemically Active and Environmentally Stable CsPbBr ₃ /TiO ₂ Core/Shell Nanocrystals. Advanced Functional Materials, 2018, 28, 1704288.	7.8	413
28	General Strategy for the Growth of CsPbX ₃ (X = Cl, Br, I) Perovskite Nanosheets from the Assembly of Nanorods. Chemistry of Materials, 2018, 30, 3854-3860.	3.2	75
29	Direct synthesis of sulfide capped CdS and CdS/ZnS colloidal nanocrystals for efficient hydrogen evolution under visible light irradiation. Journal of Materials Chemistry A, 2018, 6, 16328-16332.	5.2	29
30	Complete Dopant Substitution by Spinodal Decomposition in Mn-Doped Two-Dimensional CsPbCl ₃ Nanoplatelets. Chemistry of Materials, 2018, 30, 6400-6409.	3.2	97
31	A Redox Shuttle Accelerates O ₂ Evolution of Photocatalysts Formed In Situ under Visible Light. Advanced Materials, 2017, 29, 1606009.	11.1	48
32	Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 4789-4796.	6.6	146
33	Enhanced visible-light-driven hydrogen generation by in situ formed photocatalyst RGO–CdS–Ni _x S from metal salts and RGO–CdS composites. Journal of Materials Chemistry A, 2017, 5, 9537-9543.	5.2	29
34	Prolonged lifetime and enhanced separation of photogenerated charges of nanosized α-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde. Nano Research, 2017, 10, 2321-2331.	5.8	44
35	Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 10365-10373.	5.2	89
36	Controlled Dopant Migration in CdS/ZnS Core/Shell Quantum Dots. Journal of the American Chemical Society, 2017, 139, 8878-8885.	6.6	90

#	Article	IF	CITATIONS
37	Identifying key intermediates generated in situ from Cu(II) salt–catalyzed C–H functionalization of aromatic amines under illumination. Science Advances, 2017, 3, e1700666.	4.7	40
38	Interface Engineering of Mn-Doped ZnSe-Based Core/Shell Nanowires for Tunable Host–Dopant Coupling. ACS Nano, 2017, 11, 12591-12600.	7.3	45
39	Nonstoichiometric Cu _{<i>x</i>} In _{<i>y</i>} S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4833-4838.	3.6	45
40	Coupling of Nanocrystalline Anatase TiO2 to Porous Nanosized LaFeO3 for Efficient Visible-Light Photocatalytic Degradation of Pollutants. Nanomaterials, 2016, 6, 22.	1.9	35
41	Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO ₄ Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 18577-18583.	4.0	92
42	Tracking Co(I) Intermediate in Operando in Photocatalytic Hydrogen Evolution by X-ray Transient Absorption Spectroscopy and DFT Calculation. Journal of Physical Chemistry Letters, 2016, 7, 5253-5258.	2.1	44
43	Comparison of H ₂ photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy) ₃ Cl ₂ in aqueous solution. Energy and Environmental Science, 2016, 9, 2083-2089.	15.6	65
44	Solar Energy Conversion: Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy (Adv. Sci. 4/2016). Advanced Science, 2016, 3, .	5.6	1
45	Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. Advanced Science, 2016, 3, 1500282.	5.6	60
46	Exceptional Visible-Light Activities of TiO ₂ -Coupled N-Doped Porous Perovskite LaFeO ₃ for 2,4-Dichlorophenol Decomposition and CO ₂ Conversion. Environmental Science & Technology, 2016, 50, 13600-13610.	4.6	146
47	Protonated Graphitic Carbon Nitride with Surface Attached Molecule as Hole Relay for Efficient Photocatalytic O ₂ Evolution. ACS Catalysis, 2016, 6, 8336-8341.	5.5	44
48	An Oxidant-Free Strategy for Indole Synthesis via Intramolecular C–C Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 4635-4639.	5.5	102
49	Combining visible light catalysis and transfer hydrogenation for in situ efficient and selective semihydrogenation of alkynes under ambient conditions. Chemical Communications, 2016, 52, 1800-1803.	2.2	42
50	Polymer-modified hydrophilic graphene: A promotor to photocatalytic hydrogen evolution for in situ formation of core@shell cobalt nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 247-254.	2.0	13
51	Visible light-induced photochemical oxygen evolution from water by 3,4,9,10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. Catalysis Science and Technology, 2016, 6, 672-676.	2.1	16
52	Solution-processable graphenes by covalent functionalization of graphene oxide with polymeric monoamines. Science China Chemistry, 2016, 59, 1018-1024.	4.2	3
53	Activation of CH Bonds through Oxidantâ€Free Photoredox Catalysis: Crossâ€Coupling Hydrogenâ€Evolution Transformation of Isochromans and βâ€Keto Esters. Chemistry - A European Journal, 2015, 21, 18080-18084.	1.7	85
54	The singlet excited state of BODIPY promoted aerobic cross-dehydrogenative-coupling reactions under visible light. Chemical Communications, 2015, 51, 11256-11259.	2.2	91

#	Article	IF	CITATIONS
55	A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy and Environmental Science, 2015, 8, 1443-1449.	15.6	90
56	Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C ₃ N ₄ for Photocatalytic O ₂ Evolution. ACS Catalysis, 2015, 5, 6973-6979.	5.5	414
57	Vectorial Electron Transfer for Improved Hydrogen Evolution by Mercaptopropionicâ€Acidâ€Regulated CdSe Quantumâ€Dots–TiO ₂ –Ni(OH) ₂ Assembly. ChemSusChem, 2015, 8, 642-64	.9. ^{3.6}	39
58	Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts. Beilstein Journal of Nanotechnology, 2014, 5, 1167-1174.	1.5	12
59	Mechanistic Insights into the Interfaceâ€Directed Transformation of Thiols into Disulfides and Molecular Hydrogen by Visibleâ€Light Irradiation of Quantum Dots. Angewandte Chemie - International Edition, 2014, 53, 2085-2089.	7.2	205
60	Photocatalytic Hydrogen Evolution from Glycerol and Water over Nickelâ€Hybrid Cadmium Sulfide Quantum Dots under Visibleâ€Light Irradiation. ChemSusChem, 2014, 7, 1468-1475.	3.6	91
61	Enhancement of the Efficiency of Photocatalytic Reduction of Protons to Hydrogen via Molecular Assembly. Accounts of Chemical Research, 2014, 47, 2177-2185.	7.6	237
62	Cross-Coupling Hydrogen Evolution Reaction in Homogeneous Solution without Noble Metals. Organic Letters, 2014, 16, 1988-1991.	2.4	147
63	Visible Light Catalysis-Assisted Assembly of Ni _h -QD Hollow Nanospheres in Situ via Hydrogen Bubbles. Journal of the American Chemical Society, 2014, 136, 8261-8268.	6.6	74
64	Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy and Environmental Science, 2013, 6, 2597.	15.6	115
65	A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis. Journal of the American Chemical Society, 2013, 135, 19052-19055.	6.6	250
66	A robust "artificial catalyst―in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy and Environmental Science, 2013, 6, 465-469.	15.6	120
67	Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nature Communications, 2013, 4, 2695.	5.8	159
68	Water-soluble sulfonated–graphene–platinum nanocomposites: facile photochemical preparation with enhanced catalytic activity for hydrogen photogeneration. Catalysis Science and Technology, 2013, 3, 1815.	2.1	20
69	Facile Synthesis of Phosphateâ€Functionalized MWCNT–TiO ₂ Nanocomposites as Efficient Photocatalysts and Insights into the Roles of Nanostructured Carbon. ChemPlusChem, 2013, 78, 670-676.	1.3	7
70	Photocatalysis: An Exceptional Artificial Photocatalyst, Ni _h dSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution (Adv. Mater.) Tj ETQq0 () OirgBT /	Oværlock 10 T
71	An Exceptional Artificial Photocatalyst, Ni _h â€CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution. Advanced Materials, 2013, 25, 6613-6618.	11.1	140
72	Graphene-Supported RuO ₂ Nanoparticles for Efficient Aerobic Cross-Dehydrogenative	2.4	62

Graphene-Supported RuO₂ Nanoparticles for Efficient Aerobic Cross-Dehydrogenative Coupling Reaction in Water. Organic Letters, 2012, 14, 5992-5995. 72

#	Article	IF	CITATIONS
73	A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. Chemical Communications, 2011, 47, 8406.	2.2	50