Yang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3782528/publications.pdf

Version: 2024-02-01

248	21,693	78 h-index	136
papers	citations		g-index
251	251	251	19389
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Allâ€Graphene Coreâ€Sheath Microfibers for Allâ€Solidâ€State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Advanced Materials, 2013, 25, 2326-2331.	11.1	1,007
2	Recent Developments and Understanding of Novel Mixed Transitionâ€Metal Oxides as Anodes in Lithium Ion Batteries. Advanced Energy Materials, 2016, 6, 1502175.	10.2	756
3	Highly Compressionâ€Tolerant Supercapacitor Based on Polypyrroleâ€mediated Graphene Foam Electrodes. Advanced Materials, 2013, 25, 591-595.	11.1	745
4	Gel Polymer Electrolytes for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702184.	10.2	674
5	Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2016, 2, 35-62.	9.5	483
6	Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5536-5546.	4.0	435
7	Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy and Environmental Science, 2018, 11, 2673-2695.	15.6	388
8	Superior performance of ordered macroporous TiNb 2 O 7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy, 2017, 34, 15-25.	8.2	351
9	Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Advances, 2013, 3, 23638.	1.7	346
10	Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. Journal of Power Sources, 2015, 274, 869-884.	4.0	343
11	Magnetic graphene@PANI@porous TiO ₂ ternary composites for high-performance electromagnetic wave absorption. Journal of Materials Chemistry C, 2016, 4, 6362-6370.	2.7	332
12	Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013, 5, 3428.	2.8	307
13	Promoting the Transformation of Li ₂ S ₂ to Li ₂ S: Significantly Increasing Utilization of Active Materials for Highâ€Sulfurâ€Loading Li–S Batteries. Advanced Materials, 2019, 31, e1901220.	11.1	303
14	Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. Advanced Materials, 2017, 29, 1606663.	11.1	273
15	A capacity recoverable zinc-ion micro-supercapacitor. Energy and Environmental Science, 2018, 11, 3367-3374.	15.6	263
16	Site-Occupation-Tuned Superionic Li _{<i>x</i>} ScCl _{3+<i>x</i>} Halide Solid Electrolytes for All-Solid-State Batteries. Journal of the American Chemical Society, 2020, 142, 7012-7022.	6.6	260
17	Inorganic–Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. Nano Letters, 2017, 17, 5653-5659.	4.5	243
18	Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst. Journal of Materials Chemistry A, 2015, 3, 1841-1846.	5.2	229

#	Article	IF	Citations
19	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie - International Edition, 2016, 55, 7979-7982.	7.2	211
20	Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31240-31248.	4.0	207
21	Functional graphene nanomesh foam. Energy and Environmental Science, 2014, 7, 1913.	15.6	206
22	A Novel Organic "Polyurea―Thin Film for Ultralongâ€Life Lithiumâ€Metal Anodes via Molecularâ€Layer Deposition. Advanced Materials, 2019, 31, e1806541.	11.1	204
23	Advances in Wearable Fiberâ€Shaped Lithiumâ€lon Batteries. Advanced Materials, 2016, 28, 4524-4531.	11.1	201
24	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy and Environmental Science, 2021, 14, 2577-2619.	15.6	201
25	Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12355.	5.2	199
26	Addressing Interfacial Issues in Liquid-Based and Solid-State Batteries by Atomic and Molecular Layer Deposition. Joule, 2018, 2, 2583-2604.	11.7	198
27	Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. CheM, 2017, 3, 348-362.	5.8	194
28	A Selfâ€Healing Aqueous Lithiumâ€Ion Battery. Angewandte Chemie - International Edition, 2016, 55, 14384-14388.	7.2	191
29	A Versatile Snâ€Substituted Argyrodite Sulfide Electrolyte for Allâ€Solidâ€State Li Metal Batteries. Advanced Energy Materials, 2020, 10, 1903422.	10.2	183
30	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	8.8	176
31	Graphene fiber: a new material platform for unique applications. NPG Asia Materials, 2014, 6, e113-e113.	3.8	175
32	A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nature Communications, 2018, 9, 4509.	5.8	175
33	Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 6761-6766.	5.2	173
34	Tuning the Anode–Electrolyte Interface Chemistry for Garnetâ€Based Solidâ€State Li Metal Batteries. Advanced Materials, 2020, 32, e2000030.	11.1	156
35	Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption. Nano-Micro Letters, 2022, 14, 102.	14.4	156
36	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	8.8	154

#	Article	IF	Citations
37	Meshâ€onâ€Mesh Graphitic ₃ N ₄ @Graphene for Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1606352.	7.8	145
38	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	8.2	143
39	A Shapeâ€Memory Supercapacitor Fiber. Angewandte Chemie - International Edition, 2015, 54, 15419-15423.	7.2	141
40	In Situ Li ₃ PS ₄ Solidâ€State Electrolyte Protection Layers for Superior Longâ€Life and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	11.1	140
41	One-pot hydrothermal synthesis of RGO/CoFe 2 O 4 composite and its excellent microwave absorption properties. Materials Letters, 2014, 114, 52-55.	1.3	137
42	An Airâ€Stable and Dendriteâ€Free Li Anode for Highly Stable Allâ€Solidâ€State Sulfideâ€Based Li Batteries. Advanced Energy Materials, 2019, 9, 1902125.	10.2	133
43	A fiber-shaped aqueous lithium ion battery with high power density. Journal of Materials Chemistry A, 2016, 4, 9002-9008.	5.2	132
44	Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance. Nano Energy, 2016, 24, 32-44.	8.2	132
45	Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy, 2018, 53, 168-174.	8.2	132
46	Stimulus-responsive graphene systems towards actuator applications. Energy and Environmental Science, 2013, 6, 3520.	15.6	130
47	Molecular Layer Deposition for Energy Conversion and Storage. ACS Energy Letters, 2018, 3, 899-914.	8.8	123
48	Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy, 2018, 54, 375-382.	8.2	123
49	Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nature Communications, 2020, 11 , 5700.	5.8	122
50	Tiâ€Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. Small, 2019, 15, e1904740.	5.2	121
51	Spontaneous, Straightforward Fabrication of Partially Reduced Graphene Oxide–Polypyrrole Composite Films for Versatile Actuators. ACS Nano, 2016, 10, 4735-4741.	7. 3	120
52	Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode. Matter, 2019, 1, 1215-1231.	5.0	120
53	Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as Highâ€Performance Cathode. Advanced Materials, 2017, 29, 1703764.	11.1	119
54	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 17054-17060.	7.2	119

#	Article	IF	Citations
55	Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior. Carbon, 2014, 78, 231-242.	5.4	118
56	Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes. Nano Energy, 2018, 43, 368-375.	8.2	117
57	Stretchable supercapacitor at â^'30 °C. Energy and Environmental Science, 2021, 14, 3075-3085.	15.6	114
58	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 2437-2442.	7.2	111
59	Vaporâ€Activated Power Generation on Conductive Polymer. Advanced Functional Materials, 2016, 26, 8784-8792.	7.8	110
60	Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Materials, 2020, 27, 117-123.	9.5	109
61	Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews, 2021, 50, 3889-3956.	18.7	109
62	Pt/Pd Single-Atom Alloys as Highly Active Electrochemical Catalysts and the Origin of Enhanced Activity. ACS Catalysis, 2019, 9, 9350-9358.	5.5	106
63	High Capacity, Dendriteâ€Free Growth, and Minimum Volume Change Na Metal Anode. Small, 2018, 14, e1703717.	5 . 2	104
64	Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17553-17557.	5.2	103
65	Highly-stable P2–Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Storage Materials, 2020, 26, 503-512.	9.5	101
66	Realizing both High Energy and High Power Densities by Twisting Three Carbonâ€Nanotubeâ€Based Hybrid Fibers. Angewandte Chemie - International Edition, 2015, 54, 11177-11182.	7.2	97
67	A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nature Communications, 2021, 12, 2647.	5.8	97
68	Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Nextâ€Generation Battery Systems. Angewandte Chemie - International Edition, 2019, 58, 15797-15802.	7.2	96
69	Antiperovskite Electrolytes for Solid-State Batteries. Chemical Reviews, 2022, 122, 3763-3819.	23.0	96
70	Manipulating Interfacial Nanostructure to Achieve Highâ€Performance Allâ€Solidâ€State Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900261.	4.6	90
71	Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy, 2020, 78, 105107.	8.2	88
72	Hybrid Energy Storage Device: Combination of Zinc-Ion Supercapacitor and Zinc–Air Battery in Mild Electrolyte. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7239-7248.	4.0	88

#	Article	IF	CITATIONS
73	PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy, 2021, 88, 106205.	8.2	88
74	Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries. Electrochimica Acta, 2015, 174, 762-769.	2.6	86
7 5	Polypyrrole-Based Composite Materials for Electromagnetic Wave Absorption. Polymer Reviews, 2021, 61, 646-687.	5.3	86
76	Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues. Advanced Materials, 2017, 29, 1702713.	11.1	85
77	Atomic Layer Deposition of Lithium Niobium Oxides as Potential Solid-State Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1654-1661.	4.0	85
78	Robust Metallic Lithium Anode Protection by the Molecular‣ayerâ€Đeposition Technique. Small Methods, 2018, 2, 1700417.	4.6	84
79	An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solidâ€ Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.	State 11.1	82
80	Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochimica Acta, 2013, 93, 120-130.	2.6	80
81	Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy, 2020, 76, 105015.	8.2	80
82	A Type of 1 nm Molybdenum Carbide Confined within Carbon Nanomesh as Highly Efficient Bifunctional Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705967.	7.8	78
83	A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. Angewandte Chemie - International Edition, 2015, 54, 14951-14955.	7.2	77
84	Stabilization of all-solid-state Li–S batteries with a polymer–ceramic sandwich electrolyte by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 23712-23719.	5.2	77
85	All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. ACS Nano, 2021, 15, 11417-11427.	7.3	77
86	Electrolyte Dynamics Engineering for Flexible Fiber-Shaped Aqueous Zinc-lon Battery with Ultralong Stability. Nano Letters, 2021, 21, 9651-9660.	4.5	77
87	Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping. Nano Energy, 2020, 69, 104396.	8.2	76
88	Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries. ACS Energy Letters, 2020, 5, 2156-2164.	8.8	76
89	Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors. Advanced Materials, 2022, 34, e2110013.	11.1	75
90	Composite Nanostructure Construction on the Grain Surface of Liâ€Rich Layered Oxides. Advanced Materials, 2020, 32, e1906070.	11.1	74

#	Article	IF	CITATIONS
91	Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO ₂ batteries. Journal of Materials Chemistry A, 2020, 8, 2769-2776.	5.2	72
92	Facile preparation of RGO/Cu2O/Cu composite and its excellent microwave absorption properties. Materials Letters, 2013, 109, 112-115.	1.3	71
93	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie, 2016, 128, 8111-8114.	1.6	70
94	Versatile Graphene Oxide Puttyâ€Like Material. Advanced Materials, 2016, 28, 10287-10292.	11.1	68
95	Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots. ACS Nano, 2020, 14, 14929-14938.	7.3	64
96	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	10.2	64
97	Decoupling atomic-layer-deposition ultrafine RuO 2 for high-efficiency and ultralong-life Li-O 2 batteries. Nano Energy, 2017, 34, 399-407.	8.2	63
98	On the Munn–Silbey approach to nonlocal exciton–phonon coupling. Journal of Chemical Physics, 1994, 100, 2335-2345.	1.2	62
99	Variational energy band theory for polarons: Mapping polaron structure with the Toyozawa method. Journal of Chemical Physics, 1997, 107, 3159-3178.	1.2	62
100	Preparation of hollow Zn2SnO4 boxes for advanced lithium-ion batteries. RSC Advances, 2013, 3, 14480.	1.7	62
101	Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance. Nano Energy, 2019, 60, 111-118.	8.2	62
102	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm ^{â''2} /20 mAh cm ^{â''2} Realized by Selective Nucleation within Microchannel Walls. Advanced Energy Materials, 2020, 10, 1903753.	10.2	62
103	Liâ€CO ₂ Batteries Efficiently Working at Ultra‣ow Temperatures. Advanced Functional Materials, 2020, 30, 2001619.	7.8	61
104	One-pot simplified co-precipitation synthesis of reduced graphene oxide/Fe3O4 composite and its microwave electromagnetic properties. Materials Letters, 2013, 106, 22-25.	1.3	59
105	Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries.	4.0	58
106	Syntheses, structures and photoluminescent properties of a series of Ag(i) coordination architectures based on 2,4-diamino-6-methyl-1,3,5-triazine and dicarboxylates: from a OD discrete molecule to a 3D infinite network. CrystEngComm, 2011, 13, 6431.	1.3	57
107	Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy, 2020, 72, 104686.	8.2	56
108	Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8, 12113-12117.	2.8	55

#	Article	IF	Citations
109	Self-healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries. Energy Storage Materials, 2019, 22, 194-199.	9.5	55
110	Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition. Nano Energy, 2018, 53, 716-725.	8.2	53
111	Temperatureâ€Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotronâ€Based Imaging Techniques. Advanced Materials, 2020, 32, e2002550.	11.1	53
112	Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solidâ€State Na Metal Batteries. Advanced Functional Materials, 2020, 30, 2001118.	7.8	53
113	A self-healing zinc ion battery under -20 °C. Energy Storage Materials, 2022, 44, 517-526.	9.5	53
114	Elongating the cycle life of lithium metal batteries in carbonate electrolyte with gradient solid electrolyte interphase layer. Energy Storage Materials, 2021, 34, 241-249.	9.5	52
115	Insight into Prolonged Cycling Life of 4 V Allâ€Solidâ€State Polymer Batteries by a Highâ€Voltage Stable Binder. Advanced Energy Materials, 2021, 11, .	10.2	52
116	Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface. International Journal of Heat and Mass Transfer, 2015, 80, 636-643.	2.5	51
117	<i>In situ</i> formation of highly controllable and stable Na ₃ PS ₄ as a protective layer for Na metal anode. Journal of Materials Chemistry A, 2019, 7, 4119-4125.	5.2	51
118	Highâ€Efficiency and Stable Liâ^'CO ₂ Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
119	Electrospun SnO2–ZnO nanofibers with improved electrochemical performance as anode materials for lithium-ion batteries. International Journal of Hydrogen Energy, 2015, 40, 14338-14344.	3.8	50
120	New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes. Nano Energy, 2017, 38, 19-27.	8.2	50
121	Facile synthesis of RGO/Fe3O4/Ag composite with high microwave absorption capacity. Materials Letters, 2013, 111, 188-191.	1.3	49
122	Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12824-12831.	4.0	49
123	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie, 2019, 131, 17210-17216.	1.6	49
124	A Flexible Aqueous Zinc–lodine Microbattery with Unprecedented Energy Density. Advanced Materials, 2022, 34, e2109450.	11.1	49
125	Ultrahighâ€Capacity and Long‣ife Lithium–Metal Batteries Enabled by Engineering Carbon Nanofiber–Stabilized Graphene Aerogel Film Host. Small, 2018, 14, e1803310.	5.2	48
126	Regulated lithium plating and stripping by a nano-scale gradient inorganic–organic coating for stable lithium metal anodes. Energy and Environmental Science, 2021, 14, 4085-4094.	15.6	48

#	Article	IF	CITATIONS
127	Grapheneâ€Supported <scp><scp>Ce</scp></scp> – <scp><scp>SnS</scp></scp> < ₂ Nanocomposite as Anode Material for Lithiumâ€lon Batteries. Journal of the American Ceramic Society, 2013, 96, 2190-2196.	1.9	47
128	Ultralow Loading and High-Performing Pt Catalyst for a Polymer Electrolyte Membrane Fuel Cell Anode Achieved by Atomic Layer Deposition. ACS Catalysis, 2019, 9, 5365-5374.	5.5	47
129	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€State Liâ€O ₂ Batteries. Angewandte Chemie - Internatio Edition, 2021, 60, 5821-5826.	nal2	47
130	Variational energy band theory for polarons: Mapping polaron structure with the Merrifield method. Journal of Chemical Physics, 1997, 106, 5622-5630.	1.2	46
131	Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Materials, 2020, 30, 238-249.	9.5	46
132	Stable Silicon Anodes by Molecular Layer Deposited Artificial Zincone Coatings. Advanced Functional Materials, 2021, 31, 2010526.	7.8	46
133	Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes. Nano Energy, 2019, 65, 103988.	8.2	45
134	Interconnected Molybdenum Carbide-Based Nanoribbons for Highly Efficient and Ultrastable Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24608-24615.	4.0	44
135	Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage Materials, 2020, 33, 139-146.	9.5	44
136	Recent advances in highly integrated energy conversion and storage system. SusMat, 2022, 2, 142-160.	7.8	44
137	Synthesis and properties of Li2SnO3/polyaniline nanocomposites as negative electrode material for lithium-ion batteries. Applied Surface Science, 2012, 258, 9896-9901.	3.1	42
138	Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2014, 147, 201-208.	2.6	42
139	Selective desorption of high-purity (6,5) SWCNTs from hydrogels through surfactant modulation. Chemical Communications, 2016, 52, 2928-2931.	2.2	42
140	Compact Assembly and Programmable Integration of Supercapacitors. Advanced Materials, 2020, 32, e1907005.	11.1	42
141	Comparing Electron Recombination via Interfacial Modifications in Dye-Sensitized Solar Cells. ACS Applied Materials & Dye-Sensitized Solar Cells. ACS Applied Materials & Dye-Sensitized Solar Cells. ACS	4.0	41
142	A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li–Se batteries. Journal of Materials Chemistry A, 2020, 8, 278-286.	5.2	41
143	Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries. Nano Energy, 2020, 77, 105097.	8.2	41
144	Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Materials, 2018, 15, 415-421.	9.5	40

#	Article	IF	Citations
145	Making Fiberâ€Shaped Ni//Bi Battery Simultaneously with High Energy Density, Power Density, and Safety. Advanced Functional Materials, 2020, 30, 1905971.	7.8	40
146	Suppressed dendrite formation realized by selective Li deposition in all-solid-state lithium batteries. Energy Storage Materials, 2020, 27, 198-204.	9.5	40
147	Boiling and quenching heat transfer advancement by nanoscale surface modification. Scientific Reports, 2017, 7, 6117.	1.6	39
148	A directly swallowable and ingestible micro-supercapacitor. Journal of Materials Chemistry A, 2020, 8, 4055-4061.	5.2	39
149	Lithiumâ€Metal Anodes Working at 60â€mA cm ^{â^'2} and 60â€mAh cm ^{â^'2} Nanoscale Lithiumâ€lon Adsorbing. Angewandte Chemie - International Edition, 2021, 60, 17419-17425.	through	39
150	A variational approach to nonlocal exciton–phonon coupling. Journal of Chemical Physics, 1997, 106, 2728-2740.	1.2	38
151	Hollow Zn2SnO4 boxes wrapped with flexible graphene as anode materials for lithium batteries. Electrochimica Acta, 2014, 120, 128-132.	2.6	38
152	Carbon-doped Li2SnO3/graphene as an anode material for lithium-ion batteries. Ceramics International, 2013, 39, 1741-1747.	2.3	37
153	Versatile origami micro-supercapacitors array as a wind energy harvester. Journal of Materials Chemistry A, 2018, 6, 19750-19756.	5.2	37
154	On the Cycling Performance of Na $\hat{a}\in O$ ₂ Cells: Revealing the Impact of the Superoxide Crossover toward the Metallic Na Electrode. Advanced Functional Materials, 2018, 28, 1801904.	7.8	37
155	3D Printing of Free-Standing "O ₂ Breathable―Air Electrodes for High-Capacity and Long-Life Na–O ₂ Batteries. Chemistry of Materials, 2020, 32, 3018-3027.	3.2	37
156	Intense and wavelength-tunable photoluminescence from surface functionalized MgO nanocrystal clusters. Journal of Materials Chemistry, 2011, 21, 7263.	6.7	36
157	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	10.2	36
158	Ultralongâ€Life Quasiâ€Solidâ€State Liâ€O ₂ Batteries Enabled by Coupling Advanced Air Electrode Design with Li Metal Anode Protection. Small Methods, 2019, 3, 1800437.	4.6	35
159	Superelastic, Macroporous Polystyreneâ€Mediated Graphene Aerogels for Active Pressure Sensing. Chemistry - an Asian Journal, 2016, 11, 1071-1075.	1.7	34
160	Elastic and wearable ring-type supercapacitors. Journal of Materials Chemistry A, 2016, 4, 3217-3222.	5.2	34
161	Atomic Layer Deposited Nonâ€Noble Metal Oxide Catalyst for Sodium–Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. Advanced Functional Materials, 2017, 27, 1606662.	7.8	34
162	Tunable Graphene Systems for Water Desalination. ChemNanoMat, 2020, 6, 1028-1048.	1.5	34

#	Article	IF	CITATIONS
163	Hydrothermal synthesis of flower-like Zn2SnO4 composites and their performance as anode materials for lithium-ion batteries. Ceramics International, 2014, 40, 8021-8025.	2.3	33
164	Nanoscale Homogeneous Energetic Copper Azides@Porous Carbon Hybrid with Reduced Sensitivity and High Ignition Ability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22545-22551.	4.0	33
165	Hydrothermal derived Li2SnO3/C composite as negative electrode materials for lithium-ion batteries. Applied Surface Science, 2012, 258, 6923-6929.	3.1	32
166	Facile synthesis and performance of polypyrrole-coated hollow Zn2SnO4 boxes as anode materials for lithium-ion batteries. Ceramics International, 2014, 40, 2359-2364.	2.3	32
167	Boosting Cycling Stability and Rate Capability of Li–CO ₂ Batteries via Synergistic Photoelectric Effect and Plasmonic Interaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
168	Preparation and application of hollow ZnFe2O4@PANI hybrids as high performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 107247-107253.	1.7	31
169	Polymer/Graphene Hybrids for Advanced Energyâ€Conversion and â€Storage Materials. Chemistry - an Asian Journal, 2016, 11, 1151-1168.	1.7	31
170	Multi-functional nanowall arrays with unrestricted Li ⁺ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 22958-22965.	5.2	31
171	Selective atomic layer deposition of RuO _x catalysts on shape-controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. Journal of Materials Chemistry A, 2018, 6, 24397-24406.	5. 2	31
172	Injectable fiber batteries for all-region power supply <i>in vivo</i> . Journal of Materials Chemistry A, 2021, 9, 1463-1470.	5.2	31
173	Rational Component and Structure Design of Nobleâ€Metal Composites for Optical and Catalytic Applications. Small Structures, 2021, 2, 2000138.	6.9	31
174	Robust self-gated-carriers enabling highly sensitive wearable temperature sensors. Applied Physics Reviews, 2021, 8, .	5.5	31
175	Botryoidalis hollow Zn2SnO4 boxes@graphene as anode materials for advanced lithium-ion batteries. RSC Advances, 2013, 3, 23489.	1.7	30
176	Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: Synthesis and enhanced electromagnetic absorption properties. Materials Letters, 2013, 109, 146-150.	1.3	29
177	Hollow Zn2SnO4 boxes coated with N-doped carbon for advanced lithium-ion batteries. Ceramics International, 2014, 40, 2275-2280.	2.3	29
178	Controlled synthesis of tin-doped indium oxide (ITO) nanowires. Journal of Crystal Growth, 2015, 413, 31-36.	0.7	29
179	Grain Boundary Design of Solid Electrolyte Actualizing Stable Allâ€Solidâ€State Sodium Batteries. Small, 2021, 17, e2103819.	5 . 2	29
180	Graphene supported poly-pyrrole(PPY)/Li 2 SnO 3 ternary composites as anode materials for lithium ion batteries. Ceramics International, 2013, 39, 6861-6866.	2.3	28

#	Article	IF	Citations
181	Sticky-note supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3355-3360.	5.2	28
182	An Aqueous Antiâ€Freezing and Heatâ€Tolerant Symmetric Microsupercapacitor with 2.3ÂV Output Voltage. Advanced Energy Materials, 2021, 11, 2101523.	10.2	28
183	Synthesis and properties of carbon-doped Li2SnO3 nanocomposite as cathode material for lithium-ion batteries. Materials Letters, 2012, 71, 66-69.	1.3	27
184	Strongly Bound Sodium Dodecyl Sulfate Surrounding Single-Wall Carbon Nanotubes. Langmuir, 2017, 33, 5006-5014.	1.6	26
185	A Selfâ€Healing Aqueous Lithiumâ€lon Battery. Angewandte Chemie, 2016, 128, 14596-14600.	1.6	25
186	What Structural Features Make Porous Carbons Work for Redox-Enhanced Electrochemical Capacitors? A Fundamental Investigation. ACS Energy Letters, 2021, 6, 854-861.	8.8	25
187	An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drugâ€Resistant Bacteria. Advanced Materials, 2022, 34, e2200334.	11.1	25
188	O ₂ /O ₂ [–] Crossover- and Dendrite-Free Hybrid Solid-State Na–O ₂ Batteries. Chemistry of Materials, 2019, 31, 9024-9031.	3.2	24
189	Fast Charging All Solidâ€State Lithium Batteries Enabled by Rational Design of Dual Verticallyâ€Aligned Electrodes. Advanced Functional Materials, 2020, 30, 2005357.	7.8	24
190	Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures, 2022, 3, .	6.9	23
191	Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes. Nanoscale, 2019, 11, 9617-9625.	2.8	22
192	Reviving Anode Protection Layer in Naâ€O ₂ Batteries: Failure Mechanism and Resolving Strategy. Advanced Energy Materials, 2021, 11, 2003789.	10.2	22
193	Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Science Advances, 2022, 8, .	4.7	22
194	Aligning the binder effect on sodium–air batteries. Journal of Materials Chemistry A, 2018, 6, 1473-1484.	5.2	21
195	Injectable Fiber Electronics for Tumor Treatment. Advanced Fiber Materials, 2022, 4, 246-255.	7.9	21
196	Polyaniline(PANI) coated Zn2SnO4 cube as anode materials for lithium batteries. Polymer Testing, 2013, 32, 1582-1587.	2.3	20
197	Regulation of 2D Graphene Materials for Electrocatalysis. Chemistry - an Asian Journal, 2020, 15, 2271-2281.	1.7	20
198	Preparation of Li ₂ SnO ₃ and its application in lithiumâ€ion batteries. Surface and Interface Analysis, 2013, 45, 1297-1303.	0.8	19

#	Article	IF	CITATIONS
199	Graphene supported Li2SnO3 as anode material for lithium-ion batteries. Electronic Materials Letters, 2013, 9, 683-686.	1.0	19
200	Carbon nanotubes cross-linked Zn2SnO4 nanoparticles/graphene networks as high capacities, long life anode materials for lithium ion batteries. Journal of Applied Electrochemistry, 2016, 46, 851-860.	1.5	19
201	Evaluation of Critical Parameters in the Separation of Single-Wall Carbon Nanotubes through Selective Adsorption onto Hydrogels. Journal of Physical Chemistry C, 2014, 118, 15495-15505.	1.5	18
202	Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Nextâ€Generation Battery Systems. Angewandte Chemie, 2019, 131, 15944-15949.	1.6	18
203	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie, 2019, 131, 2459-2464.	1.6	18
204	Gradually Crosslinking Carbon Nanotube Array in Mimicking the Beak of Giant Squid for Compressionâ€6ensing Supercapacitor. Advanced Functional Materials, 2020, 30, 1902971.	7.8	18
205	Durable sodium battery composed of conductive Ti3C2Tx MXene modified gel polymer electrolyte. Solid State Ionics, 2021, 365, 115655.	1.3	18
206	Nanomechanical elasticity and fracture studies of lithium phosphate (LPO) and lithium tantalate (LTO) solid-state electrolytes. Nanoscale, 2019, 11, 18730-18738.	2.8	17
207	Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by Scanning Transmission X-ray Microscopy. Chemistry of Materials, 2020, 32, 1272-1280.	3.2	17
208	Pure Aqueous Planar Microsupercapacitors with Ultrahigh Energy Density under Wide Temperature Ranges. Advanced Functional Materials, 2022, 32, .	7.8	17
209	Engineering a "nanonet―reinforced polymer electrolyte for long-life Li–O2 batteries. Journal of Materials Chemistry A, 2019, 7, 24947-24952.	5.2	16
210	2D Grapheneâ€Based Macroscopic Assemblies for Microâ€Supercapacitors. ChemSusChem, 2020, 13, 1255-1274.	3.6	16
211	Laserâ∈Based Growth and Treatment of Graphene for Advanced Photo―and Electroâ€Related Device Applications. Advanced Functional Materials, 2022, 32, .	7.8	16
212	Two Ag(I) coordination polymers derived from melamine and dicarboxylates: Syntheses, crystal structures and thermal stabilities. Journal of Molecular Structure, 2011, 1000, 85-91.	1.8	15
213	Balancing surface area with electron recombination in nanowire-based dye-sensitized solar cells. Solar Energy, 2016, 132, 214-220.	2.9	15
214	Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation. Nanotechnology, 2016, 27, 165303.	1.3	15
215	Variable-Energy Hard X-ray Photoemission Spectroscopy: A Nondestructive Tool to Analyze the Cathode–Solid-State Electrolyte Interface. ACS Applied Materials & Diterfaces, 2020, 12, 2293-2298.	4.0	15
216	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€State Liâ€O ₂ Batteries. Angewandte Chemie, 2021, 135885-5890.	3, 1.6	14

#	Article	IF	CITATIONS
217	Encapsulating Sn(OH) ₄ Nanoparticles in Micropores of Mesocarbon Microbeads: A New Anode Material for Highâ€Performance Lithium Ion Batteries. Advanced Materials Technologies, 2021, 6, 2000849.	3.0	14
218	In Situ Fabrication of Lead-Free Cs ₃ Cu ₂ I ₅ Nanostructures Embedded in Poly(Vinylidene Fluoride) Electrospun Fibers for Polarized Emission. ACS Applied Nano Materials, 2022, 5, 508-516.	2.4	14
219	Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7368-7375.	4.0	13
220	In Situ Intercalation of Bismuth into 3D Reduced Graphene Oxide Scaffolds for High Capacity and Long Cycle‣ife Energy Storage. Small, 2019, 15, e1905903.	5 . 2	11
221	Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor. Science China Materials, 2022, 65, 2412-2420.	3.5	11
222	Controlled removal of individual carbon nanotubes from vertically aligned arrays for advanced nanoelectrodes. Journal of Materials Chemistry, 2010, 20, 3595.	6.7	9
223	TiO2 supported on bamboo charcoal for H2O2-assisted pollutant degradation under solar light. Materials Science in Semiconductor Processing, 2014, 17, 124-128.	1.9	9
224	Fracture and Fatigue of Al2O3-Graphene Nanolayers. Nano Letters, 2021, 21, 437-444.	4.5	9
225	Three novel organosilver(I) coordination networks constructed from diallylmelamine and polycarboxylates incorporating silver-vinyl bonding. Dalton Transactions, 2012, 41, 2289-2295.	1.6	8
226	Preparation of BaFe12O19 as anode material for lithium-ion batteries through sol–gel method. Journal of Sol-Gel Science and Technology, 2013, 66, 238-241.	1.1	8
227	Tin-Doped Indium Oxide-Titania Core-Shell Nanostructures for Dye-Sensitized Solar Cells. Advances in Condensed Matter Physics, 2014, 2014, 1-6.	0.4	8
228	The study on the Li-storage performances of bamboo charcoal (BC) and BC/Li2SnO3 composites. Journal of Applied Electrochemistry, 2013, 43, 1243-1248.	1.5	7
229	Lithiumâ€Metal Anodes Working at 60â€mA cm ^{â^2} and 60â€mAh cm ^{â^2} Nanoscale Lithiumâ€lon Adsorbing. Angewandte Chemie, 2021, 133, 17559-17565.	through	7
230	Tunable-Deformed Graphene Layers for Actuation. Frontiers in Chemistry, 2019, 7, 725.	1.8	6
231	Highâ€Efficiency and Stable Li O2 Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie, 0, , .	1.6	6
232	Controlled synthesis of hollow Si–Ni–Sn nanoarchitectured electrode for advanced lithium-ion batteries. RSC Advances, 2016, 6, 23260-23264.	1.7	5
233	Unusual Assembly and Conversion of Graphene Quantum Dots into Crystalline Graphite Nanocapsules. Chemistry - an Asian Journal, 2017, 12, 1272-1276.	1.7	4
234	I 3 – /I – Redox Enhanced Sodium Metal Batteries by Using Graphene Oxide Encapsulated Mesoporous Carbon Sphere Cathode. Advanced Functional Materials, 2021, 31, 2101637.	7.8	4

#	Article	IF	CITATIONS
235	Boosting Cycling Stability and Rate Capability of Li–CO ₂ Batteries via Synergistic Photoelectric Effect and Plasmonic Interaction. Angewandte Chemie, 2022, 134, .	1.6	4
236	Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures, 2022, 3, .	6.9	3
237	Signatures of many-body localization and metastability by weak perturbation. Physical Review B, 2020, 102, .	1.1	2
238	Effective Gait Feature Extraction Using Temporal Fusion And Spatial Partial. , 2021, , .		2
239	Progressive Spatio-Temporal Feature Extraction Model For Gait Recognition. , 2021, , .		2
240	Tissue Engineering: Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues (Adv. Mater. 44/2017). Advanced Materials, 2017, 29, .	11.1	1
241	A facile route to prepare reflective counter electrode for enhanced dye-sensitised solar cell efficiency. International Journal of Nano and Biomaterials, 2016, 6, 205.	0.1	0
242	Secure Link Selection for Relay Networks with Buffer. , 2021, , .		0
243	The Application of Atomic Layer Deposition in Lithium-lon Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
244	Metal Organic Framework Derived Nanomaterials in the Application of Lithium-Ion and Sodium-Ion Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
245	Molecular-Level Engineering of Protected Li Metal Anodes for High Performance Next-Generation Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
246	Na Metal Batteries: Interface Design from Liquid to Solid Systems. ECS Meeting Abstracts, 2020, MA2020-01, 565-565.	0.0	0
247	Rational Design of Protective Film for Long-Life and Stable Lithium Metal Anode Via Molecular Layer Deposition. ECS Meeting Abstracts, 2020, MA2020-01, 555-555.	0.0	0
248	Stabilizing the Li Metal Interface: Molecular Layer Deposition for Advanced Next-Generation Energy Storage Systems. ECS Meeting Abstracts, 2020, MA2020-01, 281-281.	0.0	0