
Xiaoyan Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3781959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 2005, 41, 423-432.	5.4	677
2	Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). Journal of Biomaterials Science, Polymer Edition, 2004, 15, 797-811.	3.5	327
3	Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. Journal of Membrane Science, 2005, 250, 167-173.	8.2	296
4	Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 2004, 53, 1704-1710.	3.1	284
5	A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. European Polymer Journal, 2006, 42, 2013-2022.	5.4	250
6	Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials, 2013, 34, 2202-2212.	11.4	242
7	Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. Reactive and Functional Polymers, 2006, 66, 1559-1564.	4.1	232
8	Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid and Polymer Science, 2007, 285, 855-863.	2.1	200
9	Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid and Polymer Science, 2009, 287, 1425-1434.	2.1	153
10	Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials, 2013, 34, 7302-7313.	11.4	153
11	Preparation and properties of electrospun poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 2005, 97, 466-474.	2.6	145
12	Characterization of poly(L-lactic acid) fibers produced by melt spinning. Journal of Applied Polymer Science, 2001, 81, 251-260.	2.6	136
13	Strategies for anti-icing: low surface energy or liquid-infused?. RSC Advances, 2016, 6, 70251-70260.	3.6	118
14	Amphiphilic Antifogging/Anti-Icing Coatings Containing POSS-PDMAEMA- <i>b</i> -PSBMA. ACS Applied Materials & Interfaces, 2017, 9, 22959-22969.	8.0	113
15	Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. Journal of Applied Polymer Science, 2006, 102, 39-45.	2.6	97
16	Bio-functional electrospun nanomaterials: From topology design to biological applications. Progress in Polymer Science, 2019, 91, 1-28.	24.7	92
17	In vitro degradation of porous poly(l-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions. Polymer Degradation and Stability, 2008, 93, 1838-1845.	5.8	91
18	Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomaterialia, 2016, 43, 303-313.	8.3	91

#	Article	IF	CITATIONS
19	Preparation and characterization of silverâ€chitosan nanocomposite particles with antimicrobial activity. Journal of Applied Polymer Science, 2011, 120, 3180-3189.	2.6	75
20	Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array. Journal of Biomedical Materials Research - Part A, 2007, 83A, 868-878.	4.0	74
21	Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 95-115.	3.5	72
22	A pilot study of conically graded chitosan–gelatin hydrogel/PLCA scaffold with dualâ€delivery of TGFâ€Î²1 and BMPâ€2 for regeneration of cartilage–bone interface. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1344-1353.	3.4	70
23	Effect of hotâ€press on electrospun poly(vinylidene fluoride) membranes. Polymer Engineering and Science, 2008, 48, 934-940.	3.1	69
24	Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching. Journal of Applied Polymer Science, 2008, 109, 1232-1241.	2.6	69
25	Facile preparation of superhydrophobic coating by spraying a fluorinated acrylic random copolymer micelle solution. Soft Matter, 2013, 9, 1005-1009.	2.7	64
26	Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers. Applied Surface Science, 2014, 316, 222-231.	6.1	64
27	Formation of zwitterionic coatings with an aqueous lubricating layer for antifogging/anti-icing applications. Progress in Organic Coatings, 2018, 115, 56-64.	3.9	62
28	Enhancing antifogging/frost-resisting performances of amphiphilic coatings via cationic, zwitterionic or anionic polyelectrolytes. Chemical Engineering Journal, 2019, 357, 667-677.	12.7	62
29	Antifogging/Antibacterial Coatings Constructed by <i>N</i> -Hydroxyethylacrylamide and Quaternary Ammonium-Containing Copolymers. ACS Applied Materials & Interfaces, 2020, 12, 12305-12316.	8.0	62
30	Local Delivery of Dual MicroRNAs in Trilayered Electrospun Grafts for Vascular Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 6863-6875.	8.0	61
31	Electrospinning of ultrafine core/shell fibers for biomedical applications. Science China Chemistry, 2010, 53, 1246-1254.	8.2	60
32	Sustained Release of VEGF by Coaxial Electrospun Dextran/PLGA Fibrous Membranes in Vascular Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1811-1827.	3.5	60
33	Formation of bone-like apatite on poly(L-lactic acid) fibers by a biomimetic process. Journal of Biomedical Materials Research Part B, 2001, 57, 140-150.	3.1	59
34	Surface degradation of poly(l-lactic acid) fibres in a concentrated alkaline solution. Polymer Degradation and Stability, 2003, 79, 45-52.	5.8	59
35	Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS. ACS Applied Materials & Interfaces, 2019, 11, 4654-4666.	8.0	58
36	Rapid Gelling Chitosan/Polylysine Hydrogel with Enhanced Bulk Cohesive and Interfacial Adhesive Force: Mimicking Features of Epineurial Matrix for Peripheral Nerve Anastomosis. Biomacromolecules, 2016, 17, 622-630.	5.4	57

#	Article	IF	CITATIONS
37	Controlled Release of PDGF-bb by Coaxial Electrospun Dextran/Poly(L-lactide-co-ε-caprolactone) Fibers with an Ultrafine Core/Shell Structure. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 803-819.	3.5	56
38	Preparation and evaluation of hydrophobic surfaces of polyacrylate-polydimethylsiloxane copolymers for anti-icing. Progress in Organic Coatings, 2013, 76, 1435-1444.	3.9	52
39	Antimicrobial eugenol-loaded electrospun membranes of poly(ε-caprolactone)/gelatin incorporated with REDV for vascular graft applications. Colloids and Surfaces B: Biointerfaces, 2018, 162, 335-344.	5.0	52
40	UV-curable POSS-fluorinated methacrylate diblock copolymers for icephobic coatings. Progress in Organic Coatings, 2016, 93, 87-96.	3.9	46
41	An injectable supramolecular hydrogel hybridized with silver nanoparticles for antibacterial application. Soft Matter, 2018, 14, 1227-1234.	2.7	46
42	Electrospun membranes of PELCL/PCL-REDV loading with miRNA-126 for enhancement of vascular endothelial cell adhesion and proliferation. Materials Science and Engineering C, 2018, 85, 37-46.	7.3	45
43	Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. Journal of Biomedical Materials Research - Part A, 2010, 92A, 563-574.	4.0	44
44	Preparation of chitosanâ€ <i>graft</i> â€(methyl methacrylate)/Ag nanocomposite with antimicrobial activity. Polymer International, 2010, 59, 62-70.	3.1	44
45	Highly icephobic properties on slippery surfaces formed from polysiloxane and fluorinated POSS. Progress in Organic Coatings, 2017, 103, 48-59.	3.9	44
46	Improvement of antiâ€icing properties of low surface energy coatings by introducing phaseâ€change microcapsules. Polymer Engineering and Science, 2018, 58, 973-979.	3.1	43
47	In vitro degradation of poly(L- lactic acid) fibers in phosphate buffered saline. Journal of Applied Polymer Science, 2002, 85, 936-943.	2.6	41
48	Targeted delivery of microRNA-126 to vascular endothelial cells via REDV peptide modified PEG-trimethyl chitosan. Biomaterials Science, 2016, 4, 849-856.	5.4	40
49	Integrated antibacterial and antifouling surfaces via cross-linking chitosan- g -eugenol/zwitterionic copolymer on electrospun membranes. Colloids and Surfaces B: Biointerfaces, 2018, 169, 151-159.	5.0	39
50	Preparation of PLGA Scaffolds with Graded Pores by Using a Gelatin-Microsphere Template as Porogen. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2241-2257.	3.5	37
51	Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. Journal of Materials Science: Materials in Medicine, 2015, 26, 160.	3.6	36
52	Antibacterial PCL electrospun membranes containing synthetic polypeptides for biomedical purposes. Colloids and Surfaces B: Biointerfaces, 2018, 172, 330-337.	5.0	36
53	Preparation and Characterization of Melamine-Formaldehyde Resin Micro- and Nanocapsules Filled with <i>n</i> -Dodecane. Journal of Macromolecular Science - Physics, 2012, 51, 1976-1990.	1.0	35
54	Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating. Applied Surface Science, 2015, 328, 183-192.	6.1	35

#	Article	IF	CITATIONS
55	Synthesis of POSS-containing fluorosilicone block copolymers via RAFT polymerization for application as non-wetting coating materials. Progress in Organic Coatings, 2015, 78, 188-199.	3.9	34
56	Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition. Journal of Materials Science: Materials in Medicine, 2013, 24, 2277-2286.	3.6	33
57	Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells. Materials Science and Engineering C, 2016, 68, 623-631.	7.3	33
58	Submicron/nano-structured icephobic surfaces made from fluorinated polymethylsiloxane and octavinyl-POSS. Applied Surface Science, 2016, 360, 113-120.	6.1	33
59	Structure Memory Photonic Crystals Prepared by Hierarchical Self-Assembly of Semicrystalline Bottlebrush Block Copolymers. Macromolecules, 2020, 53, 3602-3610.	4.8	33
60	Functional electrospun fibrous scaffolds with dextran- <i>g</i> -poly(<scp>l</scp> -lysine)-VAPG/microRNA-145 to specially modulate vascular SMCs. Journal of Materials Chemistry B, 2017, 5, 9312-9325.	5.8	30
61	Characterization of electrospun core/shell poly(vinyl pyrrolidone)/poly(L-lactide-co-ε-caprolactone) fibrous membranes and their cytocompatibility in vitro. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 245-258.	3.5	29
62	Anisotropic mechanical properties of hotâ€pressed PVDF membranes with higher fiber alignments via electrospinning. Polymer Engineering and Science, 2009, 49, 1291-1298.	3.1	29
63	Icephobicity of polydimethylsiloxane-b-poly(fluorinated acrylate). Thin Solid Films, 2014, 573, 67-73.	1.8	29
64	Formation of icephobic film from POSS-containing fluorosilicone multi-block methacrylate copolymers. Progress in Organic Coatings, 2015, 89, 150-159.	3.9	28
65	Formation of core/shell ultrafine fibers of PVDF/PC by electrospinning via introduction of PMMA or BTEAC. Polymer, 2009, 50, 6340-6349.	3.8	26
66	Effect of Cyclic Loading on In Vitro Degradation of Poly(L-lactide-co-glycolide) Scaffolds. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 53-66.	3.5	26
67	Encapsulation of proteinase K in PELA ultrafine fibers by emulsion electrospinning: preparation and in vitro evaluation. Colloid and Polymer Science, 2010, 288, 1113-1119.	2.1	25
68	Prolonged release from PLGA/HAp scaffolds containing drug-loaded PLGA/gelatin composite microspheres. Journal of Materials Science: Materials in Medicine, 2012, 23, 419-429.	3.6	25
69	Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells. Journal of Materials Chemistry B, 2019, 7, 5695-5703.	5.8	25
70	Handwritable one-dimensional photonic crystals prepared from dendronized brush block copolymers. Polymer Chemistry, 2019, 10, 1519-1525.	3.9	25
71	One-dimensional photonic crystals prepared by self-assembly of brush block copolymers with broad PDI. Journal of Materials Science, 2018, 53, 16160-16168.	3.7	24
72	Target regulation of both VECs and VSMCs by dualâ€loading miRNAâ€126 and miRNAâ€145 in the bilayered electrospun membrane for smallâ€diameter vascular regeneration. Journal of Biomedical Materials Research - Part A, 2019, 107, 371-382.	4.0	24

#	Article	IF	CITATIONS
73	Preparation of C/Ni–NiO composite nanofibers for anode materials in lithium-ion batteries. Applied Physics A: Materials Science and Processing, 2013, 113, 683-692.	2.3	22
74	Wellâ€Defined Magnetic Responsive Polymers Containing Ammonium FeCl ₄ from ROMP. Macromolecular Chemistry and Physics, 2016, 217, 2700-2707.	2.2	22
75	Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth. Journal of Materials Science: Materials in Medicine, 2016, 27, 106.	3.6	22
76	Performance of TMC-g-PEC-VAPC/miRNA-145 complexes in electrospun membranes for target-regulating vascular SMCs. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110369.	5.0	22
77	Structure and properties of electrospun poly(vinylidene fluoride)/polycarbonate membranes after hotâ€press. Journal of Applied Polymer Science, 2011, 122, 774-781.	2.6	21
78	Temperature and pH Dual-Responsive Supramolecular Polymer Hydrogels Hybridized with Functional Inorganic Nanoparticles. Macromolecular Chemistry and Physics, 2017, 218, 1600540.	2.2	21
79	Self-assembly of magnetic poly(ionic liquid)s and ionic liquids in aqueous solution. Polymer Chemistry, 2018, 9, 5116-5122.	3.9	21
80	Self-accelerated biodegradation of electrospun poly(ethylene glycol)–poly(l-lactide) membranes by loading proteinase K. Polymer Degradation and Stability, 2008, 93, 618-626.	5.8	20
81	Synthesis and characterization of core–shell polyacrylate latex containing fluorine/silicone in the shell and the self-stratification film. Colloid and Polymer Science, 2012, 290, 203-211.	2.1	20
82	Enhancement of icephobic properties based on UV-curable fluorosilicone copolymer films. RSC Advances, 2015, 5, 90578-90587.	3.6	20
83	Development of Icephilic ACTIVE Glycopeptides for Cryopreservation of Human Erythrocytes. Biomacromolecules, 2022, 23, 530-542.	5.4	20
84	Surface Modification of Acrylonitrile Copolymer Membranes by Grafting Acrylamide. II. Initiation by Fe2+/H2O2. Journal of Applied Polymer Science, 1998, 69, 1907-1915.	2.6	19
85	Controlled release of BSA by microsphere-incorporated PLGA scaffolds under cyclic loading. Materials Science and Engineering C, 2011, 31, 350-356.	7.3	19
86	In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates. Journal of Materials Science: Materials in Medicine, 2015, 26, 273.	3.6	19
87	From Paramagnetic to Superparamagnetic Ionic Liquid/Poly(ionic liquid): The Effect of π–π Stacking Interaction. ACS Macro Letters, 2019, 8, 1504-1510.	4.8	19
88	Controllable dualâ€release of dexamethasone and bovine serum albumin from PLGA/βâ€tricalcium phosphate composite scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 139-151.	3.4	18
89	Self-crosslinking coatings of fluorinated polysiloxanes with enhanced icephobicity. Thin Solid Films, 2017, 639, 113-122.	1.8	17
90	Controlled release of bovine serum albumin from electrospun fibrous membranes via an improved emulsion-core technique. Journal of Controlled Release, 2011, 152, e181-e182.	9.9	16

#	Article	lF	CITATIONS
91	Membrane Stabilization of Poly(ethylene glycol)- <i>b</i> -polypeptide- <i>g</i> -trehalose Assists Cryopreservation of Red Blood Cells. ACS Applied Bio Materials, 2020, 3, 3294-3303.	4.6	16
92	Diverse release behaviors of water-soluble bioactive substances from fibrous membranes prepared by emulsion and suspension electrospinning. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1244-1259.	3.5	15
93	Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose. Applied Surface Science, 2015, 347, 231-241.	6.1	15
94	Inorganic/organic hybrid magnetic polymers based on POSS and pyridinium FeCl4: the effect of self-assembly. Polymer Chemistry, 2019, 10, 4604-4610.	3.9	15
95	Enhancing Membrane-Disruptive Activity via Hydrophobic Phenylalanine and Lysine Tethered to Poly(aspartic acid). ACS Applied Materials & Interfaces, 2019, 11, 14538-14547.	8.0	15
96	Electrospinning of ultrafine PVDF/PC fibers from their dispersed solutions. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 372-380.	2.1	14
97	One-step fabrication of a superhydrophobic polymer surface from an acrylic copolymer containing POSS by spraying. RSC Advances, 2014, 4, 62694-62697.	3.6	14
98	Crosslinked Ionic Alginate and Cellulose-based Hydrogels for Photoresponsive Drug Release Systems. Fibers and Polymers, 2020, 21, 45-54.	2.1	14
99	Combination of hydrophobically modified \hat{I}^3 -poly(glutamic acid) and trehalose achieving high cryosurvival of RBCs. Science China Technological Sciences, 2021, 64, 806-816.	4.0	14
100	Modification of electrospun poly(vinylidene fluorideâ€ <i>co</i> â€hexafluoropropylene) membranes through the introduction of poly(ethylene glycol) dimethacrylate. Journal of Applied Polymer Science, 2009, 111, 3104-3112.	2.6	13
101	Progress of synthesizing methods and properties of fluorinated carbon nanotubes. Science China Technological Sciences, 2010, 53, 1225-1233.	4.0	13
102	Extraction and isolation of type I, III and V collagens and their SDS-PAGE analyses. Transactions of Tianjin University, 2011, 17, 111-117.	6.4	13
103	Thermal property of photonic crystals (PCs) prepared by solvent annealing self-assembly of bottlebrush PS-b-PtBA. Polymer, 2020, 194, 122389.	3.8	13
104	Surface modification of acrylonitrile copolymer membranes by grafting acrylamide. III. Kinetics and reaction mechanism initiating by Fe2+/H2O2. Journal of Applied Polymer Science, 1998, 69, 1917-1921.	2.6	12
105	Synthesis of paramagnetic polymers based on polyethyleneimine (PEI). RSC Advances, 2015, 5, 92207-92211.	3.6	12
106	Tadpole-shaped magnetic block copolymer: Self-assembly induced increase of magnetic susceptibility. Polymer, 2018, 135, 9-15.	3.8	12
107	Amphiphilic Copolymers Containing POSS and SBMA with <i>N</i> -Vinylcaprolactam and <i>N</i> -Vinylpyrrolidone for THF Hydrate Inhibition. ACS Omega, 2018, 3, 7371-7379.	3.5	12
108	Alcohols responsive photonic crystals prepared by self-assembly of dendronized block copolymers. Reactive and Functional Polymers, 2019, 139, 162-169.	4.1	12

	ARTICLE	IF	CITATIONS
	Enhanced anti-icing properties of branched PDMS coatings with self-regulated surface patterns. Science China Technological Sciences, 2020, 63, 960-970.	4.0	12
110 S	Surface modification of acrylonitrile copolymer membranes by grafting acrylamide. I. Initiation by eric ions. Journal of Applied Polymer Science, 1997, 66, 1521-1529.	2.6	11
	CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	11
	Grafting of poly(lauryl acrylate) onto nano-silica by â€ [~] click chemistry'. Chemical Research in Chinese Iniversities, 2014, 30, 339-342.	2.6	11
113 A S	Antifogging and antibacterial properties of amphiphilic coatings based on zwitterionic copolymers. Science China Technological Sciences, 2021, 64, 817-826.	4.0	11
	Facilitating trehalose entry into hRBCs at 4 °C by alkylated Îμ-poly(<scp>l</scp> -lysine) for glycerol-free ryopreservation. Journal of Materials Chemistry B, 2022, 10, 1042-1054.	5.8	11
	n situ encapsulation of hydrogel in ultrafine fibers by suspension electrospinning. Polymer Engineering and Science, 2012, 52, 2695-2704.	3.1	10
	PREPARATION AND PROPERTIES OF ELECTROSPUN POLY(<l>lµ</l> -CAPROLACTONE)/POLYPYRROLE MEMBRANES. Acta Polymerica Sinica, 2010, 010, 1094-1099.	0.0	10
	Effect of degradation of PLGA and PLGA/β-TCP scaffolds on the growth of osteoblasts. Science Bulletin, 2011, 56, 982-986.	1.7	9
118 R	Determination of the Pressure Dependence of the Shear Viscosity of Polymer Melts Using a Capillary Rheometer with an Attached Counter Pressure Chamber. Journal of Macromolecular Science - Physics, 2015, 54, 1029-1041.	1.0	9
	mproving crystallization behaviors of isotactic polypropylene via a new POSSâ€sorbitol compound. Polymer Engineering and Science, 2017, 57, 357-364.	3.1	9
120 C N	Ceiling Degree of Polymerization for Brush Polymers Prepared via ROMP of Poly(tert-Butyl Acrylate) Macromonomers. Chemical Research in Chinese Universities, 2018, 34, 828-832.	2.6	9
121 R	Encapsulating Microorganisms inside Electrospun Microfibers as a Living Material Enables Room-Temperature Storage of Microorganisms. ACS Applied Materials & Interfaces, 2018, 10, 18799-38806.	8.0	9
	Electrospinning of Biomaterials for Vascular Regeneration. Chemical Research in Chinese Iniversities, 2021, 37, 394-403.	2.6	9
123 a	Poly(amino acid-hydroxyethyl methacrylate)s with chiral lysine and/or leucine side moieties and their Intibacterial abilities for biomedical applications. Materials Science and Engineering C, 2017, 76, 112-1120.	7.3	8
124 P	Pyrene-Enhanced Ferromagnetic Interaction in a FeCl ₄ [–] -Based Poly(ionic) Tj ETQq0 0	0.rgBT /C 4.8	wgrlock 10 T

125	Drug-loaded ultrafine poly(vinyl alcohol) fibre mats prepared by electrospinning. E-Polymers, 2005, 5, .	3.0	7
126	Preparation of fiber-microsphere scaffolds for loading bioactive substances in gradient amounts. Science Bulletin, 2013, 58, 3415-3421.	1.7	7

#	Article	IF	CITATIONS
127	Fibre–Microsphere Membranes with Continuous BMP-2 Gradients with Potential Applications in Interface-tissue Engineering. Australian Journal of Chemistry, 2014, 67, 159.	0.9	7
128	Facile preparation of PLGA microspheres with diverse internal structures by modified doubleâ€emulsion method for controlled release. Polymer Engineering and Science, 2015, 55, 896-906.	3.1	7
129	Preparation of Xâ€ray developable <scp>LDPE/SA</scp> â€ <scp>B</scp> a <scp>SO₄</scp> composites and their thermal and mechanical properties. Polymer Composites, 2016, 37, 1396-1406.	4.6	7
130	Magnetic monomers and polymers based on alkyl-imidazolium FeCl4: The effect of alkyl chain length. Polymer, 2018, 157, 32-37.	3.8	7
131	Friction and wear properties of phenolic composites with dual inorganic oxideâ€modified titanate whiskers. Polymer Composites, 2020, 41, 3282-3293.	4.6	7
132	Self-healing anti-icing coatings prepared from PDMS polyurea. Science China Technological Sciences, 2021, 64, 1535-1543.	4.0	7
133	Cryopreservation of human erythrocytes through high intracellular trehalose with membrane stabilization of maltotriose-grafted ε-poly(<scp>I</scp> -lysine). Journal of Materials Chemistry B, 2022, 10, 4452-4462.	5.8	7
134	Degradation of electrospun poly(<scp>L</scp> â€lactide) membranes under cyclic loading. Journal of Applied Polymer Science, 2012, 124, E258.	2.6	6
135	Effect of polyhedral oligomeric silsesquioxane and sorbitol on properties of isotactic polypropylene. Chemical Research in Chinese Universities, 2015, 31, 303-307.	2.6	6
136	Dual-Mode Fluorescence and Magnetic Resonance Imaging by Perylene Diimide-Based Gd-Containing Magnetic Ionic Liquids. ACS Biomaterials Science and Engineering, 2020, 6, 6405-6414.	5.2	6
137	Modulation of vascular endothelial cells under shear stress on electrospun membranes containing REDV and microRNA-126. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1090-1099.	3.4	6
138	Compositional Dependence of Static Shear Viscosity of Immiscible PP/PS Blends. Journal of Macromolecular Science - Physics, 2007, 46, 651-665.	1.0	5
139	Controlled release of dexamethasone from porous PLGA scaffolds under cyclic loading. Science China Chemistry, 2010, 53, 594-598.	8.2	5
140	PROPERTIES OF ULTRAFINE FIBROUS POLY(VINYL ALCOHOL) MEMBRANES BY ELECTROSPINNING. Acta Polymerica Sinica, 2006, 006, 294-297.	0.0	5
141	Magnetic Poly(ionic liquid)s: Bottlebrush versus Linear Structures. Macromolecules, 2022, 55, 2067-2074.	4.8	5
142	Preparation and mineralization of PLGA/Gt electrospun fiber mats. Science Bulletin, 2009, 54, 1328-1333.	9.0	4
143	High impact strength for polypropylene/titanate whisker composites with dual compatibilizing agents. Polymer Composites, 2019, 40, 3421-3428.	4.6	4
144	From Polymerization Inhibition to Controlled Ringâ€Opening Metathesis Polymerization of Macromonomers with Tertiary Amine Groups: The Effect of Spacer Chain â€. Chinese Journal of Chemistry, 2021, 39, 1927-1935.	4.9	4

#	Article	IF	CITATIONS
145	Preparation of Poly(ε-caprolactone)/Poly(ester amide) Electrospun Membranes for Vascular Repair. Chemical Research in Chinese Universities, 2022, 38, 1111-1117.	2.6	4
146	Enhancing mechanical properties of highâ€density polyethylene/polydopamineâ€modified basalt fiber composites via synergistic compatibilizers. Polymer Composites, 2022, 43, 1136-1146.	4.6	4
147	Effect of Inorganic Fillers on Morphology and Mechanical Properties of PA66/POE- <i>g</i> -MAH/Filler Composites. Journal of Macromolecular Science - Physics, 2011, 50, 484-492.	1.0	3
148	Effect of benzyl triethylammonium chloride on microstructure of bicomponent polymeric fibers during electrospinning. Polymer Engineering and Science, 2012, 52, 1661-1671.	3.1	3
149	Carbon nanotubes grown on electrospun polyacrylonitrile-based carbon nanofibers via chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2012, 106, 863-869.	2.3	3
150	Improvement of mechanical properties for epoxy composites with modified titanate whiskers via dopamine self-oxidation. Journal of Polymer Research, 2021, 28, 1.	2.4	3
151	Development of cationic block copolymers for gene delivery. Journal of Controlled Release, 2015, 213, e32.	9.9	2
152	High impact strength of polypropylene composites with complex titanate whiskers/multiwalled carbon nanotubes. Journal of Polymer Research, 2020, 27, 1.	2.4	2
153	In Situ Internal Strengthened Carbon Nanotube Carpets on Graphene for Anti-Icing Application. ACS Applied Nano Materials, 2021, 4, 10952-10959.	5.0	2
154	NonFreezable Preservation of Human Red Blood Cells at â^'8 °C. ACS Biomaterials Science and Engineering, 2022, 8, 2644-2653.	5.2	2
155	High grafting density of cyclodextrin polymer for fast removal of aromatic compounds from water. RSC Advances, 2015, 5, 47998-48004.	3.6	1
156	Endowing antibacterial ability to poly(ε-caprolactone) by blending with cationic â^' zwitterionic copolymers for biomedical purposes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 885-895.	3.4	1