Digambar Gokhale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3781906/publications.pdf

Version: 2024-02-01

218677 149698 3,341 67 26 citations h-index papers

g-index 70 70 70 3751 docs citations times ranked citing authors all docs

56

#	Article	IF	CITATIONS
1	Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology, 2019, 127, 1612-1626.	3.1	485
2	Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochemistry, 2002, 38, 715-721.	3.7	241
3	Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresource Technology, 2007, 98, 1467-1473.	9.6	175
4	Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresource Technology, 2011, 102, 4304-4312.	9.6	173
5	Biomass to biodegradable polymer (PLA). RSC Advances, 2013, 3, 13558.	3.6	156
6	Lignocellulosic biomass: Hurdles and challenges in its valorization. Applied Microbiology and Biotechnology, 2019, 103, 9305-9320.	3 . 6	136
7	Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chemistry, 2007, 9, 58-62.	9.0	135
8	Utilization of Molasses Sugar for Lactic Acid Production by <i>Lactobacillus delbrueckii</i> subsp. <i>delbrueckii</i> Mutant Uc-3 in Batch Fermentation. Applied and Environmental Microbiology, 2008, 74, 333-335.	3.1	135
9	Lignin–carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization. Carbohydrate Polymers, 2005, 62, 57-66.	10.2	114
10	Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydrate Polymers, 2004, 57, 67-72.	10.2	108
11	Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresource Technology, 2009, 100, 1486-1490.	9.6	101
12	Enzymatic hydrolysis of delignified bagasse polysaccharides. Carbohydrate Polymers, 2005, 62, 6-10.	10.2	96
13	Lignocellulose processing: a current challenge. RSC Advances, 2014, 4, 8271.	3. 6	96
14	Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochemistry, 2006, 41, 120-126.	3.7	81
15	d-(â^')-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chemistry, 2010, 12, 1106.	9.0	78
16	Production of Lactic Acid from Cellobiose and Cellotriose by Lactobacillus delbrueckii Mutant Uc-3. Applied and Environmental Microbiology, 2007, 73, 5055-5057.	3.1	65
17	Strain improvement of Lactobacillus lactis for d-lactic acid production. Biotechnology Letters, 2010, 32, 517-520.	2.2	65
18	Biochemical characterization of two xylanases from yeast Pseudozyma hubeiensis producing only xylooligosaccharides. Bioresource Technology, 2009, 100, 6488-6495.	9.6	57

#	Article	IF	CITATIONS
19	Differential induction, purification and characterization of cold active lipase from Yarrowia lipolytica NCIM 3639. Bioresource Technology, 2011, 102, 10663-10670.	9.6	56
20	Purification, characterization and substrate specificity of thermostable \hat{l}_{\pm} -galactosidase from Bacillus stearothermophilus (NCIM-5146). Process Biochemistry, 2006, 41, 1311-1317.	3.7	47
21	Combined strategy for the dispersion/dissolution of single walled carbon nanotubes and cellulose in water. Journal of Materials Chemistry, 2011, 21, 2054.	6.7	42
22	Towards biodegradable polyolefins: strategy of anchoring minute quantities of monosaccharides and disaccharides onto functionalized polystyrene, and their effect on facilitating polymer biodegradationElectronic supplementary information (ESI) available: experimental details and weight loss data. See http://www.rsc.org/suppdata/cc/b2/b209254a/. Chemical Communications, 2002, , 2884-2885.	4.1	39
23	Chemoenzymatic synthesis of d(â^')phenylglycine using hydantoinase of Pseudomonas desmolyticum resting cells. Enzyme and Microbial Technology, 1996, 18, 353-357.	3.2	35
24	Comparative production of cellulases by mutants of Penicillium janthinellum NCIM 1171 and its application in hydrolysis of Avicel and cellulose. Bioresource Technology, 2011, 102, 6569-6572.	9.6	35
25	Optimization of cellulase production by aspergillus niger NCIM 1207. Applied Biochemistry and Biotechnology, 1991, 30, 99-109.	2.9	32
26	Potential application of yeast cellulase-free xylanase in agrowaste material treatment to remove hemicellulose fractions. Bioresource Technology, 1998, 63, 187-191.	9.6	30
27	Xylooligosaccharides (XOS) as Emerging Prebiotics: Its Production from Lignocellulosic Material. Advances in Microbiology, 2019, 09, 14-20.	0.6	30
28	Production of acidic lipase by a mutant of Aspergillus niger NCIM 1207 in submerged fermentation. Process Biochemistry, 2004, 39, 2031-2034.	3.7	27
29	Industrial yeast strain improvement: construction of a highly flocculent yeast with a killer character by protoplast fusion. Journal of Industrial Microbiology, 1995, 15, 94-102.	0.9	26
30	Enzymatic kinetic resolution studies of racemic 4-hydroxycyclopent-2-en-1-one using Lipozyme IM®. Tetrahedron: Asymmetry, 1999, 10, 4115-4122.	1.8	26
31	Protoplast fusion: A tool for intergeneric gene transfer in bacteria. Biotechnology Advances, 1993, 11, 199-217.	11.7	24
32	Purification and characterization of an extracellular \hat{l}^2 -xylosidase from Pseudozyma hubeiensis NCIM 3574 (PhXyl), an unexplored yeast. AMB Express, 2016, 6, 73.	3.0	22
33	Transfer of DNA coding for cellulases from Cellulomonas species to Bacillus subtilis by protoplast fusion. Biotechnology Letters, 1984, 6, 627-632.	2.2	19
34	Fungal degradation of carbohydrate-linked polystyrenes. Carbohydrate Polymers, 2004, 55, 393-399.	10.2	19
35	Biocatalyst development for lactic acid production at acidic pH using inter-generic protoplast fusion. RSC Advances, 2015, 5, 2024-2031.	3.6	19
36	Cold Active Lipases: Biocatalytic Tools for Greener Technology. Applied Biochemistry and Biotechnology, 2021, 193, 2245-2266.	2.9	19

#	Article	IF	CITATIONS
37	Production of cellulolytic enzymes by mutants of Aspergillus niger NCIM 1207. Enzyme and Microbial Technology, 1988, 10, 442-445.	3.2	17
38	Optimization of cellulase-free xylanase production by a novel yeast strain. Journal of Industrial Microbiology, 1994, 13, 220-224.	0.9	17
39	Production of lactic acid and fructose from media with cane sugar using mutant of Lactobacillus delbrueckii NCIM 2365. Letters in Applied Microbiology, 2006, 43, 53-57.	2.2	17
40	Lipase of Aspergillus niger NCIM 1207: A Potential Biocatalyst for Synthesis of Isoamyl Acetate. Indian Journal of Microbiology, 2010, 50, 432-437.	2.7	17
41	Hyper production of ?-glucosidase by an Aspergillus sp Biotechnology Letters, 1984, 6, 719-722.	2.2	15
42	Enhancement in ethanol production from cane molasses by skim milk supplementation. Enzyme and Microbial Technology, 1986, 8, 481-484.	3.2	15
43	Xylanase and ?-xylosidase production byAspergillus niger NCIM 1207. Biotechnology Letters, 1986, 8, 137-138.	2.2	15
44	Greener L-lactic acid production through in situ extractive fermentation by an acid-tolerant Lactobacillus strain. Applied Microbiology and Biotechnology, 2018, 102, 6425-6435.	3.6	15
45	Enhanced enzymatic hydrolysis of cellulose by partial modification of its chemical structure. Carbohydrate Polymers, 2011, 86, 962-968.	10.2	13
46	Alcohol dehydrogenase and invertase activities in ethanol tolerant yeasts. Enzyme and Microbial Technology, 1986, 8, 623-626.	3.2	12
47	Optimization Studies for Enhancing Cellulase Production by Penicillium janthinellum Mutant EU2D-21 Using Response Surface Methodology. BioResources, 2014, 9, .	1.0	12
48	Stimulation of d- and l-lactate dehydrogenases transcriptional levels in presenceÂof diammonium hydrogen phosphate resulting to enhanced lactic acidÂproduction by Lactobacillus strain. Journal of Bioscience and Bioengineering, 2017, 124, 674-679.	2.2	12
49	Protoplast fusion and genetic recombination in intra- and interstrain crossing in Aspergillus niger. Enzyme and Microbial Technology, 1989, 11, 2-5.	3.2	11
50	Novel supplements enhance the ethanol production in cane molasses fermentation by recycling yeast cell. Biotechnology Letters, 1989, 11, 213-216.	2.2	11
51	A practical and scalable process for 4-(R)-hydroxycyclopent-2-en-1-(S)-acetate by desymmetrization of meso-cyclopent-2-en-1,4-diacetate catalyzed by Trichosporon beigelii (NCIM 3326), a cheap biocatalyst. Tetrahedron: Asymmetry, 2000, 11, 2965-2970.	1.8	11
52	Environment friendly crosslinked chitosan as a matrix for selective adsorption and purification of lipase of Aspergillus niger. International Journal of Biological Macromolecules, 2008, 43, 422-425.	7.5	11
53	Production of d -hydantoinase by halophilic Pseudomonas sp. NCIM 5109. Applied Microbiology and Biotechnology, 1998, 49, 594-599.	3.6	10
54	Supplementation of medium with diammonium hydrogen phosphate enhanced the d-lactate dehydrogenase levels leading to increased d-lactic acid productivity. Bioresource Technology, 2013, 146, 736-739.	9.6	9

#	Article	IF	Citations
55	The conundrum of making biomass-to-biofuels economic. Biofuels, 2012, 3, 383-386.	2.4	8
56	Ethanolic fermentation of cane molasses by a highly flocculent yeast. Biotechnology Letters, 1989, 11, 739-744.	2.2	7
57	Secretion of thermostable \hat{l}^2 -glucosidase by an intergeneric bacterial hybrid betweencellulomonas and bacillus subtilis. Applied Biochemistry and Biotechnology, 1990, 26, 207-215.	2.9	7
58	An efficient enzymatic preparation of 4(S)-hydroxy-1 (R)-acetoxy-cyclopent-2-ene by using new yeast isolate. Biotechnology Letters, 1992, 14, 785-788.	2.2	5
59	Protection of aspergillus niger cellulases by urea during growth on glucose or glycerol supplemented media. Applied Biochemistry and Biotechnology, 1992, 37, 11-17.	2.9	5
60	Metal complexes of crosslinked chitosans. International Journal of Biological Macromolecules, 2007, 41, 491-496.	7.5	5
61	Protoplast formation and regeneration in Lactobacillus delbrueckii. Indian Journal of Microbiology, 2010, 50, 97-100.	2.7	5
62	Cellulase Hyper-Producing Fungus Penicillium janthinellum NCIM 1366 Elaborates a Wider Array of Proteins Involved inâTransport and Secretion, Potentially Enabling a DiverseÂSubstrate Range. Bioenergy Research, 0, , 1.	3.9	4
63	Supplementation with skim milk enhances the cellulolytic activity of fungi. Biotechnology Letters, 1995, 17, 631-634.	2.2	3
64	Efficient protoplast regeneration ofBacillus thuringiensis andAgrobacterium tumefaciens. Biotechnology Letters, 1992, 6, 473-476.	0.5	2
65	Purification and characterization of \hat{l}^2 -glucosidases and \hat{l}^2 -xylosidase of < i > Aspergillus niger < / i > NCIM 1207. Biofuels, 2013, 4, 203-217.	2.4	2
66	Use of Enzymes as Tools in Industrial Processes. Recent Patents on Biotechnology, 2018, 12, 297-298.	0.8	2
67	Pseudozyma hubeiensis, an unexplored yeast: It's potential in biomass conversion to value added products. Journal of Bacteriology & Mycology Open Access, 2018, 6, .	0.2	О