Astrid M Van Der Sar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/378170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-1R1-Dependent Signals Improve Control of Cytosolic Virulent Mycobacteria <i>In Vivo</i> . MSphere, 2021, 6, .	2.9	4
2	Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. American Journal of Human Genetics, 2020, 107, 989-999.	6.2	35
3	Quantification of Natural Growth of Two Strains of <i>Mycobacterium Marinum</i> for Translational Antituberculosis Drug Development. Clinical and Translational Science, 2020, 13, 1060-1064.	3.1	5
4	CSN5 inhibition triggers inflammatory signaling and Rho/ROCK-dependent loss of endothelial integrity. Scientific Reports, 2019, 9, 8131.	3.3	18
5	Type VII Secretion Substrates of Pathogenic Mycobacteria Are Processed by a Surface Protease. MBio, 2019, 10, .	4.1	20
6	A transgenic zebrafish model for the <i>in vivo</i> study of the blood and choroid plexus brain barriers using <i>claudin 5</i> . Biology Open, 2018, 7, .	1.2	48
7	Fluorescent Benzothiazinone Analogues Efficiently and Selectively Label Dpre1 in Mycobacteria and Actinobacteria. ACS Chemical Biology, 2018, 13, 3184-3192.	3.4	16
8	Mycobacteria employ two different mechanisms to cross the blood-brain barrier. Cellular Microbiology, 2018, 20, e12858.	2.1	45
9	EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF. PLoS Pathogens, 2018, 14, e1007247.	4.7	40
10	Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 1571-1581.	2.8	17
11	Subcellular localization of M. tuberculosis in vivo and effect of the adaptive immunity. Ultrastructural Pathology, 2017, 41, 133-133.	0.9	1
12	Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. Journal of Neuroinflammation, 2016, 13, 188.	7.2	57
13	Prophylactic administration of chicken cathelicidin-2 boosts zebrafish embryonic innate immunity. Developmental and Comparative Immunology, 2016, 60, 108-114.	2.3	10
14	First Demonstration of Antigen Induced Cytokine Expression by CD4-1+ Lymphocytes in a Poikilotherm: Studies in Zebrafish (Danio rerio). PLoS ONE, 2015, 10, e0126378.	2.5	73
15	The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. DMM Disease Models and Mechanisms, 2015, 8, 253-69.	2.4	129
16	Genome-Wide Transposon Mutagenesis Indicates that Mycobacterium marinum Customizes Its Virulence Mechanisms for Survival and Replication in Different Hosts. Infection and Immunity, 2015, 83, 1778-1788.	2.2	72
17	Animal Models of Tuberculosis: Zebrafish. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018580-a018580.	6.2	37
18	Analysis of SecA2-dependent substrates in <i>Mycobacterium marinum</i> identifies protein kinase G (PknG) as a virulence effector. Cellular Microbiology, 2014, 16, 280-295.	2.1	49

Astrid M Van Der Sar

#	Article	IF	CITATIONS
19	Modelling tuberculous meningitis in zebrafish using <i>Mycobacterium marinum</i> . DMM Disease Models and Mechanisms, 2014, 7, 1111-22.	2.4	37
20	Structure and Function of RNase AS, a Polyadenylate-Specific Exoribonuclease Affecting Mycobacterial Virulence InÂVivo. Structure, 2014, 22, 719-730.	3.3	16
21	Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Molecular Medicine, 2014, 6, 372-383.	6.9	311
22	Assessing Pseudomonas Virulence with Nonmammalian Host: Zebrafish. Methods in Molecular Biology, 2014, 1149, 709-721.	0.9	11
23	Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity. Cellular Microbiology, 2013, 15, 2093-2108.	2.1	26
24	Galectin-4 Reduces Migration and Metastasis Formation of Pancreatic Cancer Cells. PLoS ONE, 2013, 8, e65957.	2.5	52
25	Cyanovirin-N Inhibits Mannose-Dependent <i>Mycobacterium</i> –C-Type Lectin Interactions but Does Not Protect against Murine Tuberculosis. Journal of Immunology, 2012, 189, 3585-3592.	0.8	7
26	Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens. Journal of Visualized Experiments, 2012, , .	0.3	176
27	Tubercle bacilli rely on a type VII army for pathogenicity. Trends in Microbiology, 2012, 20, 477-484.	7.7	83
28	Unexpected Link between Lipooligosaccharide Biosynthesis and Surface Protein Release in Mycobacterium marinum. Journal of Biological Chemistry, 2012, 287, 20417-20429.	3.4	41
29	ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish. Cellular Microbiology, 2012, 14, 728-739.	2.1	58
30	Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. DMM Disease Models and Mechanisms, 2011, 4, 526-536.	2.4	122
31	Mycobacterial Secretion Systems ESX-1 and ESX-5 Play Distinct Roles in Host Cell Death and Inflammasome Activation. Journal of Immunology, 2011, 187, 4744-4753.	0.8	122
32	Discovery of zebrafish (Danio rerio) interleukin-23 alpha (IL-23α) chain, a subunit important for the formation of IL-23, a cytokine involved in the development of Th17 cells and inflammation. Molecular Immunology, 2011, 48, 981-991.	2.2	32
33	Identification of a Glycosyltransferase from Mycobacterium marinum Involved in Addition of a Caryophyllose Moiety in Lipooligosaccharides. Journal of Bacteriology, 2011, 193, 2336-2340.	2.2	27
34	Zebrafish development and regeneration: new tools for biomedical research. International Journal of Developmental Biology, 2009, 53, 835-850.	0.6	143
35	A Novel Extracytoplasmic Function (ECF) Sigma Factor Regulates Virulence in Pseudomonas aeruginosa. PLoS Pathogens, 2009, 5, e1000572.	4.7	77
36	The role of gamma interferon in innate immunity in the zebrafish embryo. DMM Disease Models and Mechanisms, 2009, 2, 571-581.	2.4	119

Astrid M Van Der Sar

#	Article	IF	CITATIONS
37	Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Molecular Immunology, 2009, 46, 2317-2332.	2.2	112
38	The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium–host interaction. Cellular Microbiology, 2008, 10, 930-944.	2.1	124
39	Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Developmental and Comparative Immunology, 2008, 32, 36-49.	2.3	124
40	Transmission of Mycobacterium marinum From Fish to a Very Young Child. Pediatric Infectious Disease Journal, 2008, 27, 81-83.	2.0	16
41	MyD88 Innate Immune Function in a Zebrafish Embryo Infection Model. Infection and Immunity, 2006, 74, 2436-2441.	2.2	169
42	Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Molecular Immunology, 2005, 42, 1185-1203.	2.2	129
43	Mycobacterium marinum Strains Can Be Divided into Two Distinct Types Based on Genetic Diversity and Virulence. Infection and Immunity, 2004, 72, 6306-6312.	2.2	133
44	A star with stripes: zebrafish as an infection model. Trends in Microbiology, 2004, 12, 451-457.	7.7	198
45	Zebrafish embryos as a model host for the real time analysis ofSalmonella typhimuriuminfections. Cellular Microbiology, 2003, 5, 601-611.	2.1	247
46	Eye defects in receptor protein-tyrosine phosphatase ? knock-down zebrafish. Developmental Dynamics, 2002, 223, 292-297.	1.8	19
47	Expression of receptor protein–tyrosine phosphatase alpha, sigma and LAR during development of the zebrafish embryo. Mechanisms of Development, 2001, 109, 423-426.	1.7	8