Antek G Wong-Foy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3781604/publications.pdf

Version: 2024-02-01

53 papers 8,797 citations

39 h-index 54 g-index

54 all docs

54 docs citations

54 times ranked 8746 citing authors

#	Article	IF	CITATIONS
1	Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 2008, 130, 10870-10871.	6.6	1,612
2	Exceptional H2Saturation Uptake in Microporous Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2006, 128, 3494-3495.	6.6	1,172
3	A Crystalline Mesoporous Coordination Copolymer with High Microporosity. Angewandte Chemie - International Edition, 2008, 47, 677-680.	7.2	478
4	A Porous Coordination Copolymer with over 5000 m $<$ sup $>$ 2 $<$ /sup $>$ /g BET Surface Area. Journal of the American Chemical Society, 2009, 131, 4184-4185.	6.6	446
5	Effect of Humidity on the Performance of Microporous Coordination Polymers as Adsorbents for CO ₂ Capture. Langmuir, 2011, 27, 6368-6373.	1.6	409
6	Liquid Phase Adsorption by Microporous Coordination Polymers: Removal of Organosulfur Compounds. Journal of the American Chemical Society, 2008, 130, 6938-6939.	6.6	365
7	Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nature Communications, 2019, 10, 1568.	5.8	278
8	Heterogenization of Homogeneous Catalysts in Metal–Organic Frameworks via Cation Exchange. Journal of the American Chemical Society, 2013, 135, 10586-10589.	6.6	277
9	MOF@MOF: microporous core–shell architectures. Chemical Communications, 2009, , 6162.	2.2	269
10	Enabling Cleaner Fuels: Desulfurization by Adsorption to Microporous Coordination Polymers. Journal of the American Chemical Society, 2009, 131, 14538-14543.	6.6	236
11	Porous Crystal Derived from a Tricarboxylate Linker with Two Distinct Binding Motifs. Journal of the American Chemical Society, 2007, 129, 15740-15741.	6.6	219
12	Theoretical Limits of Hydrogen Storage in Metal–Organic Frameworks: Opportunities and Trade-Offs. Chemistry of Materials, 2013, 25, 3373-3382.	3.2	211
13	A Metal–Organic Framework with a Hierarchical System of Pores and Tetrahedral Building Blocks. Angewandte Chemie - International Edition, 2006, 45, 2528-2533.	7.2	196
14	Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity. Journal of the American Chemical Society, 2010, 132, 13941-13948.	6.6	184
15	Microporous Coordination Polymers As Selective Sorbents for Liquid Chromatography. Langmuir, 2009, 25, 11977-11979.	1.6	170
16	Highly Dispersed Palladium(II) in a Defective Metal–Organic Framework: Application to C–H Activation and Functionalization. Journal of the American Chemical Society, 2011, 133, 20138-20141.	6.6	166
17	Coordination Copolymerization Mediated by Zn ₄ O(CO ₂ R) ₆ Metal Clusters: a Balancing Act between Statistics and Geometry. Journal of the American Chemical Society, 2010, 132, 15005-15010.	6.6	140
18	Balancing gravimetric and volumetric hydrogen density in MOFs. Energy and Environmental Science, 2017, 10, 2459-2471.	15.6	127

#	Article	IF	Citations
19	Coreâ€"Shell Structures Arise Naturally During Ligand Exchange in Metalâ€"Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 14841-14844.	6.6	115
20	Polymer@MOF@MOF: "grafting from―atom transfer radical polymerization for the synthesis of hybrid porous solids. Chemical Communications, 2015, 51, 11994-11996.	2.2	100
21	Water Sensitivity in Zn ₄ O-Based MOFs is Structure and History Dependent. Journal of the American Chemical Society, 2015, 137, 2651-2657.	6.6	94
22	Raman Spectroscopic Investigation of CH4and N2Adsorption in Metalâ^'Organic Frameworks. Chemistry of Materials, 2007, 19, 3681-3685.	3.2	93
23	Rapid Guest Exchange and Ultra‣ow Surface Tension Solvents Optimize Metal–Organic Framework Activation. Angewandte Chemie - International Edition, 2017, 56, 14618-14621.	7.2	93
24	Phase Selection and Discovery among Five Assembly Modes in a Coordination Polymerization. Inorganic Chemistry, 2008, 47, 7751-7756.	1.9	80
25	Shear-Triggered Crystallization and Light Emission of a Thermally Stable Organic Supercooled Liquid. ACS Central Science, 2015, 1, 94-102.	5.3	77
26	Gas and liquid phase adsorption in isostructural Cu ₃ [biaryltricarboxylate] ₂ microporous coordination polymers. Chemical Communications, 2011, 47, 1452-1454.	2.2	71
27	Rhodium Hydrogenation Catalysts Supported in Metal Organic Frameworks: Influence of the Framework on Catalytic Activity and Selectivity. ACS Catalysis, 2016, 6, 3569-3574.	5. 5	65
28	Alkane Câ^'H Activation and Catalysis by an O-Donor Ligated Iridium Complex. Journal of the American Chemical Society, 2003, 125, 14292-14293.	6.6	64
29	The Metal–Organic Framework Collapse Continuum: Insights from Two-Dimensional Powder X-ray Diffraction. Chemistry of Materials, 2018, 30, 6559-6565.	3.2	64
30	Exceptional surface area from coordination copolymers derived from two linear linkers of differing lengths. Chemical Science, 2012, 3, 2429.	3.7	63
31	Rapid and enhanced activation of microporous coordination polymers by flowing supercritical CO2. Chemical Communications, 2013, 49, 1419.	2.2	63
32	Predicting Methane Storage in Open-Metal-Site Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 13451-13458.	1.5	62
33	The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. Inorganic Chemistry, 2015, 54, 4591-4593.	1.9	62
34	Evolution of Nanoscale Pore Structure in Coordination Polymers During Thermal and Chemical Exposure Revealed by Positron Annihilation. Advanced Materials, 2010, 22, 1598-1601.	11.1	56
35	Metal-Dependent Phase Selection in Coordination Polymers Derived from a <i>C</i> _{2<i>v</i><fi>49, 5271-5275.</fi>}	1.9	53
36	Coordination copolymerization of three carboxylate linkers into a pillared layer framework. Chemical Science, 2014, 5, 3729.	3.7	53

#	Article	IF	CITATIONS
37	Estimation of system-level hydrogen storage for metal-organic frameworks with high volumetric storage density. International Journal of Hydrogen Energy, 2019, 44, 15135-15145.	3.8	53
38	Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption. Chemical Communications, 2012, 48, 9828.	2.2	49
39	Nonlinear Properties in Coordination Copolymers Derived from Randomly Mixed Ligands. Crystal Growth and Design, 2011, 11, 2059-2063.	1.4	47
40	Filling Pore Space in a Microporous Coordination Polymer to Improve Methane Storage Performance. Langmuir, 2015, 31, 2211-2217.	1.6	39
41	Intramolecular Cî—,H activation by dicationic Pt(II) complexes. Journal of Molecular Catalysis A, 2002, 189, 3-16.	4.8	38
42	Interpenetration, Porosity, and High-Pressure Gas Adsorption in Zn ₄ 0(2,6-naphthalene) Tj ETQq0 () 0 rgBT /0	Overlock 10 Tf
43	Microporous Coordination Polymers as Efficient Sorbents for Air Dehumidification. Langmuir, 2014, 30, 1921-1925.	1.6	36
44	Structure activity relationships in metal–organic framework catalysts for the continuous flow synthesis of propylene carbonate from CO ₂ and propylene oxide. RSC Advances, 2018, 8, 2132-2137.	1.7	32
45	Beryllium benzene dicarboxylate: the first beryllium microporous coordination polymer. Journal of Materials Chemistry, 2009, 19, 6489.	6.7	31
46	Porous Solids Arising from Synergistic and Competing Modes of Assembly: Combining Coordination Chemistry and Covalent Bond Formation. Angewandte Chemie - International Edition, 2015, 54, 3983-3987.	7.2	30
47	Rapid Guest Exchange and Ultra‣ow Surface Tension Solvents Optimize Metal–Organic Framework Activation. Angewandte Chemie, 2017, 129, 14810-14813.	1.6	26
48	Evidence of Positronium Bloch States in Porous Crystals of Zn4O-Coordination Polymers. Physical Review Letters, 2013, 110, 197403.	2.9	23
49	A Peryleneâ€Based Microporous Coordination Polymer Interacts Selectively with Electronâ€Poor Aromatics. Chemistry - A European Journal, 2016, 22, 5509-5513.	1.7	22
50	A non-regular layer arrangement of a pillared-layer coordination polymer: avoiding interpenetration via symmetry breaking at nodes. Chemical Communications, 2015, 51, 13611-13614.	2.2	9
51	Porous Solids Arising from Synergistic and Competing Modes of Assembly: Combining Coordination Chemistry and Covalent Bond Formation. Angewandte Chemie, 2015, 127, 4055-4059.	1.6	7
52	Purification of Chloromethane by Selective Adsorption of Dimethyl Ether on Microporous Coordination Polymers. Langmuir, 2016, 32, 9743-9747.	1.6	4
53	Alkane C—H Bond Activation by O-Donor Ir Complexes. ACS Symposium Series, 2004, , 105-115.	0.5	3