Tsuyoshi Hasegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3781394/publications.pdf

Version: 2024-02-01

70 papers 5,534 citations

30 h-index 65 g-index

74 all docs

74 docs citations

times ranked

74

4804 citing authors

#	Article	IF	CITATIONS
1	Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Materials, 2011, 10, 591-595.	27. 5	1,480
2	Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nature Nanotechnology, 2016, 11 , $67-74$.	31.5	524
3	Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Vonâ€Neumann Computers. Advanced Materials, 2012, 24, 252-267.	21.0	338
4	Learning Abilities Achieved by a Single Solid‧tate Atomic Switch. Advanced Materials, 2010, 22, 1831-1834.	21.0	274
5	Effects of Moisture on the Switching Characteristics of Oxideâ€Based, Gaplessâ€Type Atomic Switches. Advanced Functional Materials, 2012, 22, 70-77.	14.9	247
6	Electronic transport in Ta2O5 resistive switch. Applied Physics Letters, 2007, 91, .	3.3	213
7	Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nature Materials, 2012, 11, 530-535.	27.5	208
8	On-Demand Nanodevice with Electrical and Neuromorphic Multifunction Realized by Local Ion Migration. ACS Nano, 2012, 6, 9515-9521.	14.6	186
9	Controlling the Synaptic Plasticity of a Cu ₂ S Gapâ€₹ype Atomic Switch. Advanced Functional Materials, 2012, 22, 3606-3613.	14.9	160
10	Conductance quantization and synaptic behavior in a Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2012, 23, 435705.	2.6	157
11	Surface modification of MoS2 using an STM. Applied Surface Science, 1992, 60-61, 643-647.	6.1	154
12	Redox Reactions at Cu,Ag/Ta ₂ O ₅ Interfaces and the Effects of Ta ₂ O ₅ Film Density on the Forming Process in Atomic Switch Structures. Advanced Functional Materials, 2015, 25, 6374-6381.	14.9	148
13	A Polymerâ€Electrolyteâ€Based Atomic Switch. Advanced Functional Materials, 2011, 21, 93-99.	14.9	130
14	Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch. IEEE Transactions on Electron Devices, 2008, 55, 3283-3287.	3.0	121
15	Rate-Limiting Processes Determining the Switching Time in a Ag ₂ S Atomic Switch. Journal of Physical Chemistry Letters, 2010, 1, 604-608.	4.6	99
16	Structural studies of copper sulfide films: effect of ambient atmosphere. Science and Technology of Advanced Materials, 2008, 9, 035011.	6.1	83
17	Temperature effects on the switching kinetics of a Cu–Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2011, 22, 254013.	2.6	7 5
18	Switching kinetics of a Cu ₂ S-based gap-type atomic switch. Nanotechnology, 2011, 22, 235201.	2.6	73

#	Article	IF	Citations
19	Ionic-Electronic Conductor Nanostructures: Template-Confined Growth and Nonlinear Electrical Transport. Small, 2005, 1, 971-975.	10.0	62
20	The Atomic Switch. Proceedings of the IEEE, 2010, 98, 2228-2236.	21.3	60
21	Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots. Advanced Materials, 2018, 30, 1703261.	21.0	59
22	Nanoionics Switching Devices: "Atomic Switches― MRS Bulletin, 2009, 34, 929-934.	3.5	55
23	Effect of sulfurization conditions and post-deposition annealing treatment on structural and electrical properties of silver sulfide films. Journal of Applied Physics, 2006, 99, 103501.	2.5	52
24	Humidity effects on the redox reactions and ionic transport in a Cu/Ta ₂ O ₅ /Pt atomic switch structure. Japanese Journal of Applied Physics, 2016, 55, 06GJ09.	1.5	49
25	Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO <i>3â°x</i> -based nanoionics devices. Applied Physics Letters, 2012, 100, .	3.3	46
26	Memristive operations demonstrated by gap-type atomic switches. Applied Physics A: Materials Science and Processing, 2011, 102, 811-815.	2.3	43
27	Atomic switches: atomic-movement-controlled nanodevices for new types of computing. Science and Technology of Advanced Materials, 2011, 12, 013003.	6.1	39
28	Effects of temperature and ambient pressure on the resistive switching behaviour of polymer-based atomic switches. Journal of Materials Chemistry C, 2015, 3, 5715-5720.	5.5	38
29	Photoassisted Formation of an Atomic Switch. Small, 2010, 6, 1745-1748.	10.0	33
30	Control of local ion transport to create unique functional nanodevices based on ionic conductors. Science and Technology of Advanced Materials, 2007, 8, 536-542.	6.1	31
31	Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Advanced Materials, 2022, 34, e2201248.	21.0	31
32	Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer. Journal of Electroceramics, 2017, 39, 143-156.	2.0	24
33	SiO ₂ /Ta ₂ O ₅ heterojunction ECM memristors: physical nature of their low voltage operation with high stability and uniformity. Nanoscale, 2020, 12, 4320-4327.	5.6	24
34	Anomalous phase transition and ionic conductivity of AgI nanowire grown using porous alumina template. Journal of Applied Physics, 2007, 102, 124308.	2.5	23
35	Position detection and observation of a conducting filament hidden under a top electrode in a Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2015, 26, 145702.	2.6	19
36	Ultra‣ow Voltage and Ultra‣ow Power Consumption Nonvolatile Operation of a Threeâ€Terminal Atomic Switch. Advanced Materials, 2015, 27, 6029-6033.	21.0	15

#	Article	IF	CITATIONS
37	Theoretical investigation of kinetics of a Cu2S-based gap-type atomic switch. Applied Physics Letters, 2011, 98, 233501.	3.3	14
38	Timeâ€Dependent Operations in Molecular Gap Atomic Switches. Physica Status Solidi (B): Basic Research, 2019, 256, 1900068.	1.5	14
39	In-materio reservoir working at low frequencies in a Ag ₂ S-island network. Nanoscale, 2022, 14, 7634-7640.	5.6	14
40	Development of a molecular gap-type atomic switch and its stochastic operation. Journal of Applied Physics, 2018, 124, 152114.	2.5	13
41	Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta ₂ O _{5â^'x} /Pt, Pt structure. Applied Physics Letters, 2013, 102, 233508.	3.3	12
42	Dynamic moderation of an electric field using a SiO ₂ switching layer in TaO <i>_x</i> â€based ReRAM. Physica Status Solidi - Rapid Research Letters, 2015, 9, 166-170.	2.4	9
43	P-type polymer-based Ag ₂ S atomic switch for "tug of war―operation. Japanese Journal of Applied Physics, 2017, 56, 06GF03.	1.5	8
44	Resistivity control by the electrochemical removal of dopant atoms from a nanodot. Faraday Discussions, 2019, 213, 29-40.	3.2	8
45	Stable analog resistance change of a molecular-gap atomic switch over a wide range. Japanese Journal of Applied Physics, 2020, 59, SIIF01.	1.5	8
46	Atomic switches: atomic-movement-controlled nanodevices for new types of computing. Science and Technology of Advanced Materials, 2011, 12, 013003.	6.1	8
47	Resistive Switching Memristor: On the Direct Observation of Physical Nature of Parameter Variability. ACS Applied Materials & Early; Interfaces, 2022, 14, 1557-1567.	8.0	6
48	Quantized Conductance and Neuromorphic Behavior of a Gapless-Type Ag-Ta2O5 Atomic Switch. Materials Research Society Symposia Proceedings, 2013, 1562, 1.	0.1	5
49	Observation of a Ag protrusion on a Ag 2 S island using a scanning tunneling microscope. Results in Physics, 2015, 5, 182-183.	4.1	4
50	Formation and dissolution of conductive channels in an Ag2S-islands network. Japanese Journal of Applied Physics, 2020, 59, SN1011.	1.5	4
51	Energy reversible Si-based NEMS Switch for nonvolatile logic systems. , 2013, , .		3
52	Synaptic plasticity and memristive behavior operated by atomic switches. , 2014, , .		3
53	The rate limiting process and its activation energy in the forming process of a Cu/Ta2O5/Pt gapless-type atomic switch. Japanese Journal of Applied Physics, 2018, 57, 035202.	1.5	3
54	Development of a metal oxide-based molecular-gap atomic switch for unconventional computing. Japanese Journal of Applied Physics, 2020, 59, 040605.	1.5	3

#	Article	IF	CITATIONS
55	Study on a conductive channel of a Pt/NiO/Pt ReRAM by bias application with/without a magnetic field. Japanese Journal of Applied Physics, 2021, 60, SCCF03.	1.5	3
56	Reservoir Computing on Atomic Switch Arrays with High Precision and Excellent Memory Characteristics. Journal of Signal Processing, 2021, 25, 123-126.	0.3	3
57	Atomic Switch-Nano Device using the Transfer of Atoms(Ions) Hyomen Kagaku, 2006, 27, 232-238.	0.0	3
58	A nano-mechanical device using a Ag ₂ S–C ₆₀ system. Japanese Journal of Applied Physics, 2019, 58, SDDF02.	1.5	2
59	Emulating neural functions utilizing the larger time constants found in the operation of molecular-gap atomic switches. Japanese Journal of Applied Physics, 2021, 60, SCCF01.	1.5	2
60	Changes in the temperature dependence of Ag/Ta ₂ O ₅ /Pt gapless-type atomic switches caused by desorption/adsorption of water molecules from/into the Ta ₂ O ₅ matrix. Japanese Journal of Applied Physics, 2021, 60, SCCF05.	1.5	2
61	Impacts of Temperature and Moisture on the Resistive Switching Characteristics of a Cu-Ta2O5-Based Atomic Switch. Materials Research Society Symposia Proceedings, 2012, 1430, 25.	0.1	1
62	Flexible Polymer Atomic Switches using Ink-Jet Printing Technique. Materials Research Society Symposia Proceedings, 2012, 1430, 106.	0.1	1
63	Biomimetics: Controlling the Synaptic Plasticity of a Cu2S Gap-Type Atomic Switch (Adv. Funct. Mater.) Tj ETQq1	10.7843	314 rgBT /Ov
64	Influence of Atmosphere on Photo-Assisted Atomic Switch Operations. Key Engineering Materials, 2013, 596, 116-120.	0.4	1
65	<i>In Situ</i> Reproducible Sharp Tips for Atomic Force Microscopy. Physical Review Applied, 2021, 15, .	3.8	1
66	Measurement of changes in resistance of a Ag2+ \hat{l} ′S nano-island on removal of dopant \hat{l} -Ag atoms. Japanese Journal of Applied Physics, 2021, 60, SE1001.	1.5	1
67	Noise sensitivity of physical reservoir computing in a ring array of atomic switches. Nonlinear Theory and Its Applications IEICE, 2022, 13, 373-378.	0.6	1
68	Volatile and nonvolatile selective operation of a two-terminal gap-type atomic switch. , 2014, , .		0
69	Reliable operation of a molecular-gap atomic switch in a vacuum achieved by covering with an ionic liquid. Japanese Journal of Applied Physics, 2020, 59, SIIF04.	1.5	0
70	Behavioral Model of Molecular Gap-Type Atomic Switches and Its SPICE Integration. Circuits and Systems, 2022, 13, 1-12.	0.1	0