Megha H Talati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3780745/publications.pdf

Version: 2024-02-01

623188 752256 1,029 21 14 20 citations g-index h-index papers 21 21 21 1508 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fatty Acid Metabolic Defects and Right Ventricular Lipotoxicity in Human Pulmonary Arterial Hypertension. Circulation, 2016, 133, 1936-1944.	1.6	169
2	Evidence for Right Ventricular Lipotoxicity in Heritable Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 325-334.	2.5	146
3	Estrogen Metabolite 16α-Hydroxyestrone Exacerbates Bone Morphogenetic Protein Receptor Type II–Associated Pulmonary Arterial Hypertension Through MicroRNA-29–Mediated Modulation of Cellular Metabolism. Circulation, 2016, 133, 82-97.	1.6	83
4	ABCG2 ^{pos} lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. American Journal of Physiology - Cell Physiology, 2014, 307, C684-C698.	2.1	79
5	Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 719-728.	2.5	75
6	Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L118-L126.	1.3	74
7	Fatty Acid Metabolism in Pulmonary Arterial Hypertension: Role in Right Ventricular Dysfunction and Hypertrophy. Pulmonary Circulation, 2015, 5, 269-278.	0.8	73
8	Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight, 2019, 4, .	2.3	69
9	Oxidant stress modulates murine allergic airway responses. Free Radical Biology and Medicine, 2006, 40, 1210-1219.	1.3	64
10	Oestrogen inhibition reverses pulmonary arterial hypertension and associated metabolic defects. European Respiratory Journal, 2017, 50, 1602337.	3.1	55
11	BMP Pathway Regulation of and by Macrophages. PLoS ONE, 2014, 9, e94119.	1.1	28
12	Idiopathic and Heritable PAH Perturb Common Molecular Pathways, Correlated with Increased MSX1 Expression. Pulmonary Circulation, 2011, 1, 389-398.	0.8	27
13	Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulmonary Circulation, 2017, 7, 624-634.	0.8	20
14	Adverse physiologic effects of Western diet on right ventricular structure and function: role of lipid accumulation and metabolic therapy. Pulmonary Circulation, 2019, 9, 1-9.	0.8	20
15	<i>BMPR2</i> dysfunction impairs insulin signaling and glucose homeostasis in cardiomyocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L429-L441.	1.3	17
16	Altered Expression of Nuclear and Cytoplasmic Histone H1Âin Pulmonary Artery and Pulmonary Artery Smooth Muscle Cells in Patients with IPAH. Pulmonary Circulation, 2012, 2, 340-351.	0.8	9
17	Adverse effects of BMPR2 suppression in macrophages in animal models of pulmonary hypertension. Pulmonary Circulation, 2020, 10, 1-11.	0.8	9
18	NF-ÎB Activation Exacerbates, but Is not Required for Murine Bmpr2-Related Pulmonary Hypertension. Diseases (Basel, Switzerland), 2014, 2, 148-167.	1.0	5

#	Article	IF	CITATIONS
19	A multifaceted investigation into molecular associations of chronic thromboembolic pulmonary hypertension pathogenesis. JRSM Cardiovascular Disease, 2020, 9, 204800402090699.	0.4	5
20	Macrophages are part of cause, not consequence, in PAH. FASEB Journal, 2016, 30, 774.12.	0.2	2
21	Overexpression of Msx1 in Mouse Lung Leads to Loss of Pulmonary Vessels Following Vascular Hypoxic Injury. Cells, 2021, 10, 2306.	1.8	0