List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3780501/publications.pdf Version: 2024-02-01

ΕΤΗΛΝ **Ried**

#	Article	IF	CITATIONS
1	Gene drives gaining speed. Nature Reviews Genetics, 2022, 23, 5-22.	7.7	92
2	High-resolution <i>in situ</i> analysis of Cas9 germline transcript distributions in gene-drive <i>Anopheles</i> mosquitoes. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	14
3	Ethical Considerations for Gene Drive: Challenges of Balancing Inclusion, Power and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826727.	2.0	9
4	Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nature Communications, 2022, 13, 291.	5.8	21
5	Active genetics comes alive. BioEssays, 2022, 44, .	1.2	8
6	Cas9/Nickase-induced allelic conversion by homologous chromosome-templated repair in <i>Drosophila</i> somatic cells. Science Advances, 2022, 8, .	4.7	8
7	Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. BMC Biology, 2021, 19, 28.	1.7	77
8	Inherently confinable split-drive systems in Drosophila. Nature Communications, 2021, 12, 1480.	5.8	55
9	CopyCatchers are versatile active genetic elements that detect and quantify inter-homolog somatic gene conversion. Nature Communications, 2021, 12, 2625.	5.8	7
10	Driving to Safety: CRISPR-Based Genetic Approaches to Reducing Antibiotic Resistance. Trends in Genetics, 2021, 37, 745-757.	2.9	8
11	Dissecting the evolutionary role of the <i>Hox</i> gene <i>proboscipedia</i> in <i>Drosophila</i> mouthpart diversification by full locus replacement. Science Advances, 2021, 7, eabk1003.	4.7	2
12	Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline. PLoS Biology, 2021, 19, e3001478.	2.6	29
13	Assessment of a Split Homing Based Gene Drive for Efficient Knockout of Multiple Genes. G3: Genes, Genomes, Genetics, 2020, 10, 827-837.	0.8	67
14	Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives. Molecular Cell, 2020, 80, 246-262.e4.	4.5	54
15	Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nature Communications, 2020, 11, 5553.	5.8	110
16	Translating gene drive science to promote linguistic diversity in community and stakeholder engagement. Global Public Health, 2020, 15, 1551-1565.	1.0	6
17	A Drosophila Model for Clostridium difficile Toxin CDT Reveals Interactions with Multiple Effector Pathways. IScience, 2020, 23, 100865.	1.9	6
18	A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nature Communications, 2020, 11, 352.	5.8	61

#	Article	lF	CITATIONS
19	Gene Editing and the War Against Malaria. American Scientist, 2020, 108, 162.	0.1	2
20	Application of the Relationship-Based Model to Engagement for Field Trials of Genetically Engineered Malaria Vectors. American Journal of Tropical Medicine and Hygiene, 2020, , .	0.6	13
21	Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Nature, 2019, 566, 105-109.	13.7	206
22	Efficient allelic-drive in Drosophila. Nature Communications, 2019, 10, 1640.	5.8	59
23	A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nature Communications, 2019, 10, 5726.	5.8	44
24	Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics, 2018, 208, 1-18.	1.2	154
25	N-linked glycosylation restricts the function of short gastrulation to bind and shuttle BMPs. Development (Cambridge), 2018, 145, .	1.2	9
26	Innate Immune Interactions between Bacillus anthracis and Host Neutrophils. Frontiers in Cellular and Infection Microbiology, 2018, 8, 2.	1.8	16
27	Rules of the road for insect gene drive research and testing. Nature Biotechnology, 2017, 35, 716-718.	9.4	74
28	CRISPR/Cas9 and active genetics-based trans-species replacement of the endogenous Drosophila kni-L2 CRM reveals unexpected complexity. ELife, 2017, 6, .	2.8	30
29	Influenza NS1 directly modulates Hedgehog signaling during infection. PLoS Pathogens, 2017, 13, e1006588.	2.1	14
30	Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport. PLoS Pathogens, 2017, 13, e1006603.	2.1	11
31	The dawn of active genetics. BioEssays, 2016, 38, 50-63.	1.2	114
32	Hedgehog: Linking Uracil to Innate Defense. Cell Host and Microbe, 2015, 17, 146-148.	5.1	4
33	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
34	BMP gradients: A paradigm for morphogen-mediated developmental patterning. Science, 2015, 348, aaa5838.	6.0	236
35	The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science, 2015, 348, 442-444.	6.0	534
36	Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito <i>Anopheles stephensi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6736-43.	3.3	841

#	Article	IF	CITATIONS
37	BMPs Regulate msx Gene Expression in the Dorsal Neuroectoderm of Drosophila and Vertebrates by Distinct Mechanisms. PLoS Genetics, 2014, 10, e1004625.	1.5	18
38	RAB11-mediated trafficking in host–pathogen interactions. Nature Reviews Microbiology, 2014, 12, 624-634.	13.6	73
39	Cholera Toxin Disrupts Barrier Function by Inhibiting Exocyst-Mediated Trafficking of Host Proteins to Intestinal Cell Junctions. Cell Host and Microbe, 2013, 14, 294-305.	5.1	82
40	Deconstructing host-pathogen interactions in <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2012, 5, 48-61.	1.2	36
41	New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes and Infection, 2012, 14, 97-118.	1.0	71
42	Gene length may contribute to graded transcriptional responses in the Drosophila embryo. Developmental Biology, 2011, 360, 230-240.	0.9	17
43	Evolution of Development: Diversified Dorsoventral Patterning. Current Biology, 2011, 21, R591-R594.	1.8	11
44	Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila. Protein and Cell, 2011, 2, 554-563.	4.8	3
45	Over-Expression of DSCAM and COL6A2 Cooperatively Generates Congenital Heart Defects. PLoS Genetics, 2011, 7, e1002344.	1.5	79
46	Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature, 2010, 467, 854-858.	13.7	95
47	dHIP14-dependent palmitoylation promotes secretion of the BMP antagonist Sog. Developmental Biology, 2010, 346, 1-10.	0.9	14
48	Intriguing Extracellular Regulation of BMP Signaling. Developmental Cell, 2008, 15, 176-177.	3.1	13
49	SEGMENTATION OF NUCLEI IN CONFOCAL IMAGE STACKS USING PERFORMANCE BASED THRESHOLDING. , 2007, , .		7
50	Antioxidants put Parkinson flies back in the PINK. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13269-13270.	3.3	5
51	From The Cover: Anthrax lethal factor and edema factor act on conserved targets in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3244-3249.	3.3	39
52	Threshold-Dependent BMP-Mediated Repression: A Model for a Conserved Mechanism That Patterns the Neuroectoderm. PLoS Biology, 2006, 4, e313.	2.6	111
53	Drosophila, the golden bug, emerges as a tool for human genetics. Nature Reviews Genetics, 2005, 6, 9-23.	7.7	521
54	Formation of the BMP Activity Gradient in the Drosophila Embryo. Developmental Cell, 2005, 8, 915-924.	3.1	175

#	Article	IF	CITATIONS
55	Cysteine Repeat Domains and Adjacent Sequences Determine Distinct Bone Morphogenetic Protein Modulatory Activities of the Drosophila Sog Protein. Genetics, 2004, 166, 1323-1336.	1.2	24
56	Drosophila, an emerging model for cardiac disease. Gene, 2004, 342, 1-11.	1.0	155
57	Multiplex Detection of RNA Expression in Drosophila Embryos. Science, 2004, 305, 846-846.	6.0	350
58	Activation of theknirpslocus links patterning to morphogenesis of the second wing vein inDrosophila. Development (Cambridge), 2003, 130, 235-248.	1.2	46
59	Integrins modulate Sog activity in the Drosophila wing. Development (Cambridge), 2003, 130, 3851-3864.	1.2	32
60	A screen for dominant mutations applied to components in theDrosophilaEGF-R pathway. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3752-3757.	3.3	21
61	Creation of a Sog Morphogen Gradient in the Drosophila Embryo. Developmental Cell, 2002, 2, 91-101.	3.1	101
62	A Systematic Analysis of Human Disease-Associated Gene Sequences In Drosophila melanogaster. Genome Research, 2001, 11, 1114-1125.	2.4	751
63	Drawing lines in the Drosophila wing: initiation of wing vein development. Current Opinion in Genetics and Development, 2000, 10, 393-398.	1.5	70
64	A unity of opposites. Nature, 1999, 398, 375-376.	13.7	8
65	Localized activation of RTK/MAPK pathways during Drosophila development. BioEssays, 1998, 20, 189-194.	1.2	38
66	Xenopus chordin and Drosophila short gastrulation genes encode homologous proteins functioning in dorsal-ventral axis formation. Cell, 1995, 80, 19-20.	13.5	121