
Aaron David Goldberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3780489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetics: A Landscape Takes Shape. Cell, 2007, 128, 635-638.	28.9	2,074
2	Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions. Cell, 2010, 140, 678-691.	28.9	1,069
3	Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature, 2020, 587, 477-482.	27.8	304
4	Hira-Dependent Histone H3.3 Deposition Facilitates PRC2 Recruitment at Developmental Loci in ES Cells. Cell, 2013, 155, 107-120.	28.9	242
5	Tumors Metastatic to the Heart. Circulation, 2013, 128, 1790-1794.	1.6	216
6	Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16081-16086.	7.1	173
7	New functions for an old variant: no substitute for histone H3.3. Current Opinion in Genetics and Development, 2010, 20, 110-117.	3.3	144
8	Outcomes of patients with hematologic malignancies and COVID-19: a report from the ASH Research Collaborative Data Hub. Blood Advances, 2020, 4, 5966-5975.	5.2	124
9	Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML. Blood Advances, 2021, 5, 1552-1564.	5.2	102
10	Venetoclax and hypomethylating agents (HMAs) induce high response rates in MDS, including patients after HMA therapy failure. Blood Advances, 2020, 4, 2866-2870.	5.2	81
11	Immune Checkpoint Inhibitors in Acute Myeloid Leukemia: Novel Combinations and Therapeutic Targets. Current Oncology Reports, 2019, 21, 37.	4.0	72
12	BCMA-Targeted CAR T-cell Therapy plus Radiotherapy for the Treatment of Refractory Myeloma Reveals Potential Synergy. Cancer Immunology Research, 2019, 7, 1047-1053.	3.4	59
13	Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: recommendations from a panel of international experts. Lancet Haematology,the, 2020, 7, e601-e612.	4.6	56
14	Plasmacytoid dendritic cell expansion defines a distinct subset of <i>RUNX1</i> -mutated acute myeloid leukemia. Blood, 2021, 137, 1377-1391.	1.4	51
15	TP53 Mutations Predict Poorer Responses to CPX-351 in Acute Myeloid Leukemia. Blood, 2018, 132, 1433-1433.	1.4	29
16	Camidanlumab tesirine, an antibody-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leukemia: A phase I study. Leukemia Research, 2020, 95, 106385.	0.8	26
17	Leukemia Cell of Origin Influences Apoptotic Priming and Sensitivity to LSD1 Inhibition. Cancer Discovery, 2020, 10, 1500-1513.	9.4	24
18	Outcomes of <scp><i>TP53</i></scp> â€mutated <scp>AML</scp> with evolving frontline therapies: Impact of allogeneic stem cell transplantation on survival. American Journal of Hematology, 2022, 97, .	4.1	24

#	Article	IF	CITATIONS
19	Venetoclax-based combinations in AML and high-risk MDS prior to and following allogeneic hematopoietic cell transplant. Leukemia and Lymphoma, 2021, 62, 3394-3401.	1.3	17
20	Relapse after Allogeneic Stem Cell Transplantation of Acute Myelogenous Leukemia and Myelodysplastic Syndrome and the Importance of Second Cellular Therapy. Transplantation and Cellular Therapy, 2021, 27, 771.e1-771.e10.	1.2	17
21	Loss of plasmacytoid dendritic cell differentiation is highly predictive for post-induction measurable residual disease and inferior outcomes in acute myeloid leukemia. Haematologica, 2019, 104, 1378-1387.	3.5	15
22	Comparison of induction strategies and responses for acute myeloid leukemia patients after resistance to hypomethylating agents for antecedent myeloid malignancy. Leukemia Research, 2020, 93, 106367.	0.8	15
23	Phase I and Expansion Study of Eprenetapopt (APR-246) in Combination with Venetoclax (VEN) and Azacitidine (AZA) in <i>TP53</i> -Mutant Acute Myeloid Leukemia (AML). Blood, 2021, 138, 3409-3409.	1.4	14
24	Younger Patients with Newly Diagnosed FLT3-Mutant AML Treated with Crenolanib Plus Chemotherapy Achieve Adequate Free Crenolanib Levels and Durable Remissions. Blood, 2019, 134, 1326-1326.	1.4	13
25	Multicenter evaluation of efficacy and toxicity of venetoclaxâ€based combinations in patients with accelerated and blast phase myeloproliferative neoplasms. American Journal of Hematology, 2022, 97, .	4.1	13
26	Clinical Development of PD-1 Blockade in Hematologic Malignancies. Cancer Journal (Sudbury, Mass), 2018, 24, 31-35.	2.0	11
27	Cenome editing a mouse locus encoding a variant histone, H3.3B, to report on its expression in live animals. Genesis, 2014, 52, 959-966.	1.6	10
28	Addition of Crenolanib to Induction Chemotherapy Overcomes the Poor Prognostic Impact of Co- Occurring Driver Mutations in Patients with Newly Diagnosed FLT3-Mutated AML. Blood, 2018, 132, 1436-1436.	1.4	10
29	Tolerability and Efficacy of Crenolanib and Cytarabine/Anthracycline Chemotherapy in Older Patients (Aged 61 to 75) with Newly Diagnosed FLT3-Mutated Acute Myeloid Leukemia (AML). Blood, 2019, 134, 3829-3829.	1.4	10
30	Comparing Outcomes between Liposomal Daunorubicin/Cytarabine (CPX-351) and HMA+Venetoclax As Frontline Therapy in Acute Myeloid Leukemia. Blood, 2021, 138, 32-32.	1.4	9
31	Brain MRS glutamine as a biomarker to guide therapy of hyperammonemic coma. Molecular Genetics and Metabolism, 2017, 121, 9-15.	1.1	8
32	Acute Myeloid Leukemia with Plasmacytoid Dendritic Cell Differentiation: Predominantly Secondary AML, Enriched for RUNX1 Mutations, Frequent Cross-Lineage Antigen Expression and Poor Prognosis. Blood, 2018, 132, 2789-2789.	1.4	8
33	RAS Mutations Are Independently Associated with Decreased Overall Survival and Event-Free Survival in Patients with AML Receiving Induction Chemotherapy. Blood, 2019, 134, 18-18.	1.4	8
34	Neutropenia in adult acute myeloid leukemia patients represents a powerful risk factor for COVID-19 related mortality. Leukemia and Lymphoma, 2021, 62, 1940-1948.	1.3	7
35	The prognosis and durable clearance of <scp>RAS</scp> mutations in patients with acute myeloid leukemia receiving induction chemotherapy. American Journal of Hematology, 2021, 96, E171-E175.	4.1	6
36	Genomic Landscape Impacts Induction Outcome with CPX-351 in Patients with Acute Myeloid Leukemia. Blood, 2018, 132, 2741-2741.	1.4	5

#	Article	IF	CITATIONS
37	Comparison of Induction Strategies and Responses for Acute Myeloid Leukemia Patients after Resistance to Hypomethylating Agents for Antecedent Myeloid Malignancy. Blood, 2018, 132, 665-665.	1.4	5
38	A Phase 1a/b Dose Escalation Study of the Mutation Agnostic FLT3/BTK Inhibitor Luxeptinib (CG-806) in Patients with Relapsed or Refractory Acute Myeloid Leukemia. Blood, 2021, 138, 1272-1272.	1.4	5
39	Comparative Effectiveness of Venetoclax Combinations Vs Other Therapies Among Patients with Newly Diagnosed Acute Myeloid Leukemia: Results from the AML Real World Evidence (ARC) Initiative. Blood, 2021, 138, 2328-2328.	1.4	5
40	Safety and Efficacy of CPX-351 in Younger Patients < 60 Years Old with Secondary Acute Myeloid Leukemia: An Updated Analysis. Blood, 2021, 138, 1264-1264.	1.4	5
41	Combined Venetoclax and Hypomethylating Agent (HMA) Therapy Induces High Response Rates in Patients with Myelodysplastic Syndrome Including Patients Previously Failing HMA. Blood, 2019, 134, 4241-4241.	1.4	4
42	Clinical Benefit of Crenolanib, with or without Salvage Chemotherapy, in Multiply Relapsed, FLT3 Mutant AML Patients after Prior Treatment with Gilteritinib. Blood, 2020, 136, 8-9.	1.4	4
43	Leukemia stem cell gene expression signatures contribute to acute myeloid leukemia risk stratification. Haematologica, 2020, 105, 533-536.	3.5	3
44	Molecular Predictors and Effectiveness of Measurable Residual Disease (MRD) Eradication with Chemotherapy and Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia. Blood, 2020, 136, 18-20.	1.4	3
45	Down for the count in acute myeloid leukemia. Blood, 2016, 128, 2195-2197.	1.4	2
46	P2RY8-CRLF2 Fusion–Positive Acute Myeloid Leukemia With Myelodysplasia-Related Changes: Response to Novel Therapy. JCO Precision Oncology, 2020, 4, 152-160.	3.0	2
47	AML with Mutations in IDH1 and DNMT3A Exhibits a Distinct Epigenetic Signature with Poorer Overall Survival. Blood, 2018, 132, 1471-1471.	1.4	2
48	Multicenter Analysis of Treatment and Outcomes for Patient with <i>TP53</i> Mutated AML in the Era of Novel Therapies; Significant Impact of Allogeneic Stem Cell Transplantation on Survival. Blood, 2021, 138, 797-797.	1.4	2
49	Real-World Management of Patients with Newly Diagnosed Acute Myeloid Leukemia Treated with Venetoclax-Based Regimens: Results from the AML Real World Evidence (ARC) Initiative. Blood, 2021, 138, 1271-1271.	1.4	2
50	Outcomes of Patients with Hematologic Malignancies and COVID-19 Infection: A Report from the ASH Research Collaborative Data Hub. Blood, 2020, 136, 7-8.	1.4	2
51	A phase 1b study of atezolizumab in combination with guadecitabine for the treatment of acute myeloid leukemia. Leukemia and Lymphoma, 2022, , 1-9.	1.3	2
52	Immunotherapy for acute myeloid leukemia: from allogeneic stem cell transplant to novel therapeutics. Leukemia and Lymphoma, 2019, 60, 3350-3362.	1.3	1
53	Molecular Predictors and Current Management of Minimal Residual Disease (MRD) Following Induction Chemotherapy for Acute Myeloid Leukemia (AML). Blood, 2018, 132, 292-292.	1.4	1
54	Biomarker Driven Umbrella Trial of Crenolanib in Combination with Ivosidenib, Enasidenib, Venetoclax, Vyxeos and/or Salvage Chemotherapy in FLT3 Mutant AML. Blood, 2020, 136, 16-17.	1.4	1

#	Article	IF	CITATIONS
55	Venetoclax Therapy for Relapsed and Treatment Refractory AML: Clinical Outcomes and Molecular Predictors. Blood, 2020, 136, 47-48.	1.4	1
56	Impact of Pre-Transplant Measurable Residual Disease on Relapse Incidence and Progression-Free Survival in Older AML/MDS Patients Following Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, S114.	2.0	0
57	Measurable residual disease negativity in acute myeloid leukemia: the destination may matter more than the journey. Leukemia and Lymphoma, 2021, 62, 2050-2051.	1.3	0
58	Loss of Plasmacytoid Dendritic Cell Differentiation Is Highly Predictive for Persistent Measurable Residual Disease and Poor Outcomes in Acute Myeloid Leukemia. Blood, 2018, 132, 1523-1523.	1.4	0
59	PHF6 Mutations Are Mutually Exclusive to TP53 Mutations, and Define a Distinct Subgroup of Secondary Acute Myeloid Leukemia Associated with a Primitive Stem/Progenitor Immunophenotype, Absent Complex Karyotype and Relatively Better Outcomes. Blood, 2018, 132, 2788-2788.	1.4	0
60	Leukemia Cell of Origin Influences p53 Activity and Therapeutic Sensitivity Via an Evi1-Dependent Mechanism. Blood, 2019, 134, 109-109.	1.4	0
61	Risks for Hospitalization and Death Among Patients with Blood Disorders from the ASH RC COVID-19 Registry for Hematology. Blood, 2021, 138, 3040-3040.	1.4	0
62	Clinical Predictors of Outcome in Adult Patients with Acute Leukemias and Myelodysplastic Syndrome and COVID-19 Infection: Report from the American Society of Hematology Research Collaborative (ASH) Tj ETQq	0 0.0 rgBT	/@verlock 10

63	Clinical Outcomes of Acute Myeloid Leukemia Patients Bridged to Allogeneic Stem Cell Transplant By Venetoclax Combination Therapy. Blood, 2020, 136, 16-17.		1.4	0	
----	--	--	-----	---	--