List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3780284/publications.pdf Version: 2024-02-01

Χιννιμαν Ζητι

#	Article	IF	CITATIONS
1	Combination of Small Molecule Prodrug and Nanodrug Delivery: Amphiphilic Drug–Drug Conjugate for Cancer Therapy. Journal of the American Chemical Society, 2014, 136, 11748-11756.	6.6	628
2	Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature, 2021, 590, 594-599.	13.7	625
3	Selfâ€Assembly of Hyperbranched Polymers and Its Biomedical Applications. Advanced Materials, 2010, 22, 4567-4590.	11.1	503
4	Functional Supramolecular Polymers for Biomedical Applications. Advanced Materials, 2015, 27, 498-526.	11.1	429
5	A Supramolecular Janus Hyperbranched Polymer and Its Photoresponsive Self-Assembly of Vesicles with Narrow Size Distribution. Journal of the American Chemical Society, 2013, 135, 4765-4770.	6.6	330
6	Poly(vinyl alcohol) Hydrogels with Broadâ€Range Tunable Mechanical Properties via the Hofmeister Effect. Advanced Materials, 2021, 33, e2007829.	11.1	292
7	Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nature Nanotechnology, 2013, 8, 187-192.	15.6	289
8	Bioapplications of hyperbranched polymers. Chemical Society Reviews, 2015, 44, 4023-4071.	18.7	258
9	Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. Journal of the American Chemical Society, 2018, 140, 8005-8019.	6.6	227
10	Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomaterials Science, 2015, 3, 937-954.	2.6	226
11	Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications. Chemical Society Reviews, 2012, 41, 5986.	18.7	221
12	Superhydrophobic photothermal icephobic surfaces based on candle soot. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11240-11246.	3.3	220
13	Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nature Communications, 2018, 9, 2053.	5.8	219
14	Oxime Linkage: A Robust Tool for the Design of pH-Sensitive Polymeric Drug Carriers. Biomacromolecules, 2011, 12, 3460-3468.	2.6	192
15	Noble Metal Nanomaterials for NIRâ€īriggered Photothermal Therapy in Cancer. Advanced Healthcare Materials, 2021, 10, e2001806.	3.9	192
16	Redox-Responsive Polyphosphate Nanosized Assemblies: A Smart Drug Delivery Platform for Cancer Therapy. Biomacromolecules, 2011, 12, 2407-2415.	2.6	188
17	Synthesis and applications of stimuli-responsive hyperbranched polymers. Progress in Polymer Science, 2017, 64, 114-153.	11.8	183
18	Supramolecular Dendritic Polymers: From Synthesis to Applications. Accounts of Chemical Research, 2014, 47, 2006-2016.	7.6	181

#	Article	IF	CITATIONS
19	Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment. Theranostics, 2019, 9, 3293-3307.	4.6	177
20	Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials, 2020, 245, 119976.	5.7	176
21	A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy. Angewandte Chemie - International Edition, 2018, 57, 3064-3068.	7.2	170
22	Backbone-Thermoresponsive Hyperbranched Polyethers. Journal of the American Chemical Society, 2006, 128, 8144-8145.	6.6	167
23	Hybrid Nanospheres to Overcome Hypoxia and Intrinsic Oxidative Resistance for Enhanced Photodynamic Therapy. ACS Nano, 2020, 14, 2183-2190.	7.3	151
24	Photo-responsive polymeric micelles. Soft Matter, 2014, 10, 6121-6138.	1.2	147
25	An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering. Scientific Reports, 2016, 6, 20014.	1.6	145
26	Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydrate Polymers, 2017, 166, 31-44.	5.1	135
27	Supramolecular Copolymer Micelles Based on the Complementary Multiple Hydrogen Bonds of Nucleobases for Drug Delivery. Biomacromolecules, 2011, 12, 1370-1379.	2.6	133
28	Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Science Advances, 2020, 6, .	4.7	124
29	Rapid Detection of Exosomal MicroRNAs Using Virusâ€Mimicking Fusogenic Vesicles. Angewandte Chemie - International Edition, 2019, 58, 8719-8723.	7.2	123
30	Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. Journal of Controlled Release, 2013, 169, 228-238.	4.8	121
31	Supramolecular polymeric micelles by the host–guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy. Chemical Communications, 2011, 47, 6063.	2.2	118
32	Influence of branching architecture on polymer properties. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1277-1286.	2.4	118
33	Chitosan-Based Nanocarriers with pH and Light Dual Response for Anticancer Drug Delivery. Biomacromolecules, 2013, 14, 2601-2610.	2.6	117
34	A small molecule nanodrug consisting of amphiphilic targeting ligand–chemotherapy drug conjugate for targeted cancer therapy. Journal of Controlled Release, 2016, 230, 34-44.	4.8	117
35	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
36	"Breathing―Vesicles with Jellyfishâ€like On–Off Switchable Fluorescence Behavior. Angewandte Chemie - International Edition, 2012, 51, 11633-11637.	7.2	116

#	Article	IF	CITATIONS
37	DNA Trojan Horses: Selfâ€Assembled Floxuridine ontaining DNA Polyhedra for Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 12528-12532.	7.2	110
38	Photo-reversible supramolecular hyperbranched polymer based on host–guest interactions. Polymer Chemistry, 2011, 2, 2771.	1.9	108
39	ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: Light-triggered size-reducing and enhanced tumor penetration. Biomaterials, 2019, 211, 68-80.	5.7	107
40	Molecular Selfâ€Assembly of a Homopolymer: An Alternative To Fabricate Drugâ€Delivery Platforms for Cancer Therapy. Angewandte Chemie - International Edition, 2011, 50, 9162-9166.	7.2	100
41	Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Molecular Systems Design and Engineering, 2018, 3, 364-375.	1.7	100
42	Supramolecular ABC Miktoarm Star Terpolymer Based on Host–Guest Inclusion Complexation. Macromolecules, 2012, 45, 5941-5947.	2.2	99
43	A Camptothecinâ€Grafted DNA Tetrahedron as a Precise Nanomedicine to Inhibit Tumor Growth. Angewandte Chemie - International Edition, 2019, 58, 13794-13798.	7.2	97
44	Nucleoside Analogue-Based Supramolecular Nanodrugs Driven by Molecular Recognition for Synergistic Cancer Therapy. Journal of the American Chemical Society, 2018, 140, 8797-8806.	6.6	95
45	Hyperbranched polymers for bioimaging. RSC Advances, 2013, 3, 2071-2083.	1.7	92
46	Aptamer-Functionalized and Backbone Redox-Responsive Hyperbranched Polymer for Targeted Drug Delivery in Cancer Therapy. Biomacromolecules, 2016, 17, 2050-2062.	2.6	92
47	A Virusâ€Mimicking Nucleic Acid Nanogel Reprograms Microglia and Macrophages for Glioblastoma Therapy. Advanced Materials, 2021, 33, e2006116.	11.1	92
48	Photoluminescent Hyperbranched Poly(amido amine) Containing Î ² -Cyclodextrin as a Nonviral Gene Delivery Vector. Bioconjugate Chemistry, 2011, 22, 1162-1170.	1.8	89
49	Synergistic Combination Chemotherapy of Camptothecin and Floxuridine through Self-Assembly of Amphiphilic Drug–Drug Conjugate. Bioconjugate Chemistry, 2015, 26, 2497-2506.	1.8	88
50	Rapid Detection of Exosomal MicroRNAs Using Virusâ€Mimicking Fusogenic Vesicles. Angewandte Chemie, 2019, 131, 8811-8815.	1.6	87
51	Combining Two-Photon-Activated Fluorescence Resonance Energy Transfer and Near-Infrared Photothermal Effect of Unimolecular Micelles for Enhanced Photodynamic Therapy. ACS Nano, 2016, 10, 10489-10499.	7.3	84
52	Two-in-One Chemogene Assembled from Drug-Integrated Antisense Oligonucleotides To Reverse Chemoresistance. Journal of the American Chemical Society, 2019, 141, 6955-6966.	6.6	84
53	Synthesis and Gene Delivery of Poly(amido amine)s with Different Branched Architecture. Biomacromolecules, 2010, 11, 489-495.	2.6	83
54	DNA tetrahedron-based nanogels for siRNA delivery and gene silencing. Chemical Communications, 2019, 55, 4222-4225.	2.2	83

#	Article	IF	CITATIONS
55	Platinum(IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy. Biomaterials, 2018, 177, 67-77.	5.7	82
56	Lightâ€Induced Selfâ€Escape of Spherical Nucleic Acid from Endo/Lysosome for Efficient Nonâ€Cationic Gene Delivery. Angewandte Chemie - International Edition, 2020, 59, 19168-19174.	7.2	82
57	A supramolecular approach to the preparation of charge-tunable dendritic polycations for efficient gene delivery. Chemical Communications, 2011, 47, 5473-5475.	2.2	81
58	Multiple melting endotherms in melt-crystallized nylon 10,12. Polymer International, 2001, 50, 677-682.	1.6	79
59	Real-Time Monitoring of Anticancer Drug Release with Highly Fluorescent Star-Conjugated Copolymer as a Drug Carrier. Biomacromolecules, 2014, 15, 1355-1364.	2.6	77
60	Dendritic Polymers for Theranostics. Theranostics, 2016, 6, 930-947.	4.6	77
61	Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Research, 2016, 9, 1022-1031.	5.8	77
62	Polymeric Micelles with Water-Insoluble Drug as Hydrophobic Moiety for Drug Delivery. Biomacromolecules, 2011, 12, 2016-2026.	2.6	76
63	Self-Assembled Micelles from an Amphiphilic Hyperbranched Copolymer with Polyphosphate Arms for Drug Delivery. Langmuir, 2010, 26, 10585-10592.	1.6	75
64	Biodegradable Hyperbranched Polyglycerol with Ester Linkages for Drug Delivery. Biomacromolecules, 2012, 13, 3552-3561.	2.6	75
65	Supramolecular amphiphilic multiarm hyperbranched copolymer: synthesis, self-assembly and drug delivery applications. Polymer Chemistry, 2013, 4, 85-94.	1.9	75
66	Stressing the Role of DNA as a Drug Carrier: Synthesis of DNA–Drug Conjugates through Grafting Chemotherapeutics onto Phosphorothioate Oligonucleotides. Advanced Materials, 2019, 31, e1807533.	11.1	75
67	Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light. Polymer Chemistry, 2013, 4, 912.	1.9	74
68	Carrierâ€Free Delivery of Precise Drug–Chemogene Conjugates for Synergistic Treatment of Drugâ€Resistant Cancer. Angewandte Chemie - International Edition, 2020, 59, 17944-17950.	7.2	73
69	Self-Assembled Nanoparticles of Amphiphilic Twin Drug from Floxuridine and Bendamustine for Cancer Therapy. Molecular Pharmaceutics, 2015, 12, 2328-2336.	2.3	71
70	Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis. Biomaterials, 2018, 178, 738-750.	5.7	70
71	A redox-responsive cationic supramolecular polymer constructed from small molecules as a promising gene vector. Chemical Communications, 2013, 49, 9845.	2.2	69
72	Injectable Drug-Conjugated DNA Hydrogel for Local Chemotherapy to Prevent Tumor Recurrence. ACS Applied Materials & Interfaces, 2020, 12, 21441-21449.	4.0	66

#	Article	IF	CITATIONS
73	A Molecular Recognition Approach To Synthesize Nucleoside Analogue Based Multifunctional Nanoparticles for Targeted Cancer Therapy. Journal of the American Chemical Society, 2017, 139, 14021-14024.	6.6	65
74	Small molecule nanodrugs for cancer therapy. Materials Today Chemistry, 2017, 4, 26-39.	1.7	64
75	A non-cationic nucleic acid nanogel for the delivery of the CRISPR/Cas9 gene editing tool. Nanoscale, 2019, 11, 17211-17215.	2.8	64
76	Construction of a Supramolecular Drug–Drug Delivery System for Non-Small-Cell Lung Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 29505-29514.	4.0	63
77	Construction and Application of a pH-Sensitive Nanoreactor via a Double-Hydrophilic Multiarm Hyperbranched Polymer. Langmuir, 2010, 26, 8875-8881.	1.6	62
78	pH-Responsive Aerobic Nanoparticles for Effective Photodynamic Therapy. Theranostics, 2017, 7, 4537-4550.	4.6	60
79	Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy. Biomaterials, 2017, 144, 188-198.	5.7	57
80	Supramolecularly engineered phospholipids constructed by nucleobase molecular recognition: upgraded generation of phospholipids for drug delivery. Chemical Science, 2015, 6, 3775-3787.	3.7	56
81	Floxuridine-containing nucleic acid nanogels for anticancer drug delivery. Nanoscale, 2018, 10, 8367-8371.	2.8	56
82	Iron Chelation Nanoparticles with Delayed Saturation as an Effective Therapy for Parkinson Disease. Biomacromolecules, 2017, 18, 461-474.	2.6	55
83	Building Single-Color AlE-Active Reversible Micelles to Interpret Temperature and pH Stimuli in Both Solutions and Cells. Macromolecules, 2018, 51, 5234-5244.	2.2	55
84	Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy. Journal of Controlled Release, 2017, 266, 36-46.	4.8	54
85	Water-soluble dendritic-linear triblock copolymer-modified magnetic nanoparticles: preparation, characterization and drug release properties. Journal of Materials Chemistry, 2011, 21, 13611.	6.7	53
86	Construction and application of pH-triggered cleavable hyperbranched polyacylhydrazone for drug delivery. Polymer Chemistry, 2011, 2, 1761.	1.9	52
87	Hydrogen peroxide-responsive anticancer hyperbranched polymer micelles for enhanced cell apoptosis. Polymer Chemistry, 2015, 6, 3460-3471.	1.9	52
88	Supramolecular nanoscale drug-delivery system with ordered structure. National Science Review, 2019, 6, 1128-1137.	4.6	52
89	Sequenceâ€Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. Angewandte Chemie - International Edition, 2020, 59, 8133-8137.	7.2	52
90	Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Research, 2016, 9, 2424-2432.	5.8	51

#	Article	IF	CITATIONS
91	Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polymer Chemistry, 2015, 6, 2794-2812.	1.9	50
92	Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Science Advances, 2022, 8, eabn2941.	4.7	50
93	Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial–mesenchymal transition for oral cancer. Biomaterials Science, 2017, 5, 494-501.	2.6	47
94	Self-Delivery Nanoparticles of Amphiphilic Methotrexate-Gemcitabine Prodrug for Synergistic Combination Chemotherapy via Effect of Deoxyribonucleotide Pools. Bioconjugate Chemistry, 2016, 27, 2722-2733.	1.8	46
95	Tumorâ€Activated Photosensitization and Size Transformation of Nanodrugs. Advanced Functional Materials, 2021, 31, 2010241.	7.8	44
96	Emission enhancement and application of synthetic green fluorescent protein chromophore analogs. Materials Chemistry Frontiers, 2017, 1, 619-629.	3.2	43
97	Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Applied Surface Science, 2017, 393, 299-308.	3.1	43
98	Design and Synthesis of Cationic Drug Carriers Based on Hyperbranched Poly(amine-ester)s. Biomacromolecules, 2010, 11, 575-582.	2.6	42
99	Salt/pH dual-responsive supramolecular brush copolymer micelles with molecular recognition of nucleobases for drug delivery. RSC Advances, 2012, 2, 11953.	1.7	42
100	Dual-responsive aggregation-induced emission-active supramolecular nanoparticles for gene delivery and bioimaging. Chemical Communications, 2016, 52, 7950-7953.	2.2	42
101	Hybrid Polymerization of Vinyl and Heteroâ€Ring Groups of Glycidyl Methacrylate Resulting in Thermoresponsive Hyperbranched Polymers Displaying a Wide Range of Lower Critical Solution Temperatures. Chemistry - A European Journal, 2009, 15, 7593-7600.	1.7	41
102	pH-Responsive and Gemcitabine-Containing DNA Nanogel To Facilitate the Chemodrug Delivery. ACS Applied Materials & Interfaces, 2019, 11, 41082-41090.	4.0	41
103	Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 3772-3788.	2.9	41
104	PEGylated poly(diselenide-phosphate) nanogel as efficient self-delivery nanomedicine for cancer therapy. Polymer Chemistry, 2015, 6, 6498-6508.	1.9	40
105	Aptamers Entirely Built from Therapeutic Nucleoside Analogues for Targeted Cancer Therapy. Journal of the American Chemical Society, 2022, 144, 1493-1497.	6.6	40
106	Controlled Topological Structure of Copolyphosphates by Adjusting Pendant Groups of Cyclic Phosphate Monomers. Macromolecules, 2010, 43, 8416-8423.	2.2	39
107	Cancer Theranostic Nanoparticles Self-Assembled from Amphiphilic Small Molecules with Equilibrium Shift-Induced Renal Clearance. Theranostics, 2016, 6, 1703-1716.	4.6	39
108	Emission enhancement of conjugated polymers through self-assembly of unimolecular micelles to multi-micelle aggregates. Chemical Communications, 2011, 47, 9678.	2.2	38

#	Article	IF	CITATIONS
109	Facile Approach To Construct Ternary Cocktail Nanoparticles for Cancer Combination Therapy. Bioconjugate Chemistry, 2016, 27, 1564-1568.	1.8	38
110	Tumor-Activated and Metal–Organic Framework Assisted Self-Assembly of Organic Photosensitizers. ACS Nano, 2020, 14, 13056-13068.	7.3	38
111	Design and synthesis of thermo-responsive hyperbranched poly(amine-ester)s as acid-sensitive drug carriers. Polymer Chemistry, 2011, 2, 1661.	1.9	37
112	Enhanced gene transfection efficiency of PDMAEMA by incorporating hydrophobic hyperbranched polymer cores: effect of degree of branching. Polymer Chemistry, 2012, 3, 3324.	1.9	37
113	Synthesis of a Cationic Supramolecular Block Copolymer with Covalent and Noncovalent Polymer Blocks for Gene Delivery. ACS Applied Materials & Interfaces, 2017, 9, 9006-9014.	4.0	37
114	Thermoâ€Responsive Highly Branched Polyethers by Protonâ€Transfer Polymerization of 1,2,7,8â€Diepoxyoctane and Multiols. Macromolecular Chemistry and Physics, 2007, 208, 1637-1645.	1,1	36
115	Celecoxib-Induced Self-Assembly of Smart Albumin-Doxorubicin Conjugate for Enhanced Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 8555-8565.	4.0	36
116	Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano Today, 2021, 40, 101280.	6.2	36
117	Supercritical carbon dioxideâ€induced melting temperature depression and crystallization of syndiotactic polypropylene. Polymer Engineering and Science, 2008, 48, 1608-1614.	1.5	35
118	Protein resistant properties of polymers with different branched architecture on a gold surface. Journal of Materials Chemistry, 2012, 22, 23852.	6.7	34
119	DNA Trojan Horses: Selfâ€Assembled Floxuridine ontaining DNA Polyhedra for Cancer Therapy. Angewandte Chemie, 2017, 129, 12702-12706.	1.6	34
120	Hydrogel Ionotronics with Ultra‣ow Impedance and High Signal Fidelity across Broad Frequency and Temperature Ranges. Advanced Functional Materials, 2022, 32, 2109506.	7.8	34
121	Temperature-induced fluorescence enhancement of GFP chromophore containing copolymers for detection of Bacillus thermophilus. Polymer Chemistry, 2014, 5, 2521.	1.9	33
122	Self-delivery nanoparticles from an amphiphilic covalent drug couple of irinotecan and bendamustine for cancer combination chemotherapy. RSC Advances, 2015, 5, 86254-86264.	1.7	33
123	A Paclitaxelâ€Based Mucoadhesive Nanogel with Multivalent Interactions for Cervical Cancer Therapy. Small, 2019, 15, e1903208.	5.2	33
124	Zwitterionic gold nanorods: low toxicity and high photothermal efficacy for cancer therapy. Biomaterials Science, 2017, 5, 686-697.	2.6	32
125	Molecular insights for the biological interactions between polyethylene glycol and cells. Biomaterials, 2017, 147, 1-13.	5.7	32
126	Sequenceâ€Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. Angewandte Chemie, 2020, 132, 8210-8214.	1.6	32

#	Article	IF	CITATIONS
127	Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release. Science China Chemistry, 2010, 53, 2497-2508.	4.2	31
128	Supramolecular Fluorescent Nanoparticles for Targeted Cancer Imaging. ACS Macro Letters, 2012, 1, 1208-1211.	2.3	31
129	GFP-inspired fluorescent polymer. Polymer Chemistry, 2012, 3, 1975.	1.9	31
130	Reaction-Based Color-Convertible Fluorescent Probe for Ferroptosis Identification. Analytical Chemistry, 2018, 90, 9218-9225.	3.2	31
131	Encapsulating Therapeutic Proteins with Polyzwitterions for Lower Macrophage Nonspecific Uptake and Longer Circulation Time. ACS Applied Materials & amp; Interfaces, 2017, 9, 7972-7978.	4.0	30
132	Hydrogen Peroxide-Responsive Nanoprobe Assists Circulating Tumor Cell Identification and Colorectal Cancer Diagnosis. Analytical Chemistry, 2017, 89, 5966-5975.	3.2	30
133	"Bottom-up―Construction of Multi-Polyprodrug-Arm Hyperbranched Amphiphiles for Cancer Therapy. Bioconjugate Chemistry, 2017, 28, 1470-1480.	1.8	30
134	Hyperbranched glycoconjugated polymer from natural small molecule kanamycin as a safe and efficient gene vector. Polymer Chemistry, 2011, 2, 2674.	1.9	29
135	Matrix Metalloproteinase Responsive Nanoparticles for Synergistic Treatment of Colorectal Cancer via Simultaneous Anti-Angiogenesis and Chemotherapy. Bioconjugate Chemistry, 2016, 27, 2943-2953.	1.8	29
136	Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis. Biomaterials, 2020, 255, 120071.	5.7	29
137	Multicolor Fluorescent Polymers Inspired from Green Fluorescent Protein. Macromolecules, 2015, 48, 5969-5979.	2.2	28
138	Self-Restricted Green Fluorescent Protein Chromophore Analogues: Dramatic Emission Enhancement and Remarkable Solvatofluorochromism. Journal of Physical Chemistry Letters, 2016, 7, 2935-2944.	2.1	28
139	Color onvertible, Unimolecular, Micelleâ€Based, Activatable Fluorescent Probe for Tumor‧pecific Detection and Imaging In Vitro and In Vivo. Small, 2017, 13, 1604062.	5.2	28
140	Mustard-inspired delivery shuttle for enhanced blood–brain barrier penetration and effective drug delivery in glioma therapy. Biomaterials Science, 2017, 5, 1041-1050.	2.6	28
141	"Bottom-Up―Construction of Hyperbranched Poly(prodrug- <i>co</i> -photosensitizer) Amphiphiles Unimolecular Micelles for Chemo-Photodynamic Dual Therapy. ACS Applied Materials & Interfaces, 2017, 9, 36675-36687.	4.0	28
142	Endoplasmic Reticulum–Targeted Fluorescent Nanodot with Large Stokes Shift for Vesicular Transport Monitoring and Longâ€īerm Bioimaging. Small, 2018, 14, e1800223.	5.2	28
143	A pure molecular drug hydrogel for post-surgical cancer treatment. Biomaterials, 2021, 265, 120403.	5.7	28
144	Controlling the Particle Size of Interpolymer Complexes through Hostâ^'Guest Interaction for Drug Delivery. Langmuir, 2010, 26, 9011-9016.	1.6	27

#	Article	IF	CITATIONS
145	Real-time self-tracking of an anticancer small molecule nanodrug based on colorful fluorescence variations. RSC Advances, 2016, 6, 12472-12478.	1.7	27
146	Efficient Delivery of mRNA Using Crosslinked Nucleic Acid Nanogel as a Carrier. , 2020, 2, 1509-1515.		27
147	Synthesis of backbone thermo and pH dualâ€responsive hyperbranched poly(amineâ€ether)s through protonâ€transfer polymerization. Journal of Polymer Science Part A, 2011, 49, 966-975.	2.5	26
148	Tirapazamine-embedded polyplatinum(<scp>iv</scp>) complex: a prodrug combo for hypoxia-activated synergistic chemotherapy. Biomaterials Science, 2020, 8, 694-701.	2.6	26
149	A Redox-Responsive, In-Situ Polymerized Polyplatinum(IV)-Coated Gold Nanorod as An Amplifier of Tumor Accumulation for Enhanced Thermo-Chemotherapy. Biomaterials, 2021, 266, 120400.	5.7	26
150	Rapid and scalable fabrication of ultraâ€stretchable, antiâ€freezing conductive gels by cononsolvency effect. EcoMat, 2021, 3, e12085.	6.8	26
151	Size-controlled preparation of magnetic iron oxidenanocrystals within hyperbranched polymers and their magnetofection in vitro. Journal of Materials Chemistry, 2012, 22, 355-360.	6.7	25
152	The effect of a branched architecture on the antimicrobial activity of poly(sulfone amines) and poly(sulfone amine)/silver nanocomposites. Journal of Materials Chemistry, 2012, 22, 15227.	6.7	25
153	Selfâ€Assembled Polyprodrug Amphiphile for Subcutaneous Xenograft Tumor Inhibition with Prolonged Acting Time In Vivo. Macromolecular Bioscience, 2017, 17, 1700174.	2.1	25
154	A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy. Angewandte Chemie, 2018, 130, 3118-3122.	1.6	25
155	Reduction-responsive amphiphilic polymeric prodrugs of camptothecin–polyphosphoester for cancer chemotherapy. Biomaterials Science, 2018, 6, 1403-1413.	2.6	25
156	Recent advances in supramolecular block copolymers for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 8219-8231.	2.9	25
157	Metabolizable Photosensitizer with Aggregation-Induced Emission for Photodynamic Therapy. Chemistry of Materials, 2021, 33, 5974-5980.	3.2	25
158	Fluorinated chitosan-mediated intracellular catalase delivery for enhanced photodynamic therapy of oral cancer. Biomaterials Science, 2021, 9, 658-662.	2.6	24
159	A tumor pH-responsive complex: Carboxyl-modified hyperbranched polyether and cis-dichlorodiammineplatinum(II). Colloids and Surfaces B: Biointerfaces, 2011, 88, 674-681.	2.5	23
160	pH-responsive flower-like micelles constructed via oxime linkage for anticancer drug delivery. RSC Advances, 2014, 4, 48943-48951.	1.7	23
161	Highly fluorescent core–shell hybrid nanoparticles templated by a unimolecular star conjugated polymer for a biological tool. Chemical Communications, 2012, 48, 11954.	2.2	22
162	Self-assembly and optical properties of a porphyrin-based amphiphile. Nanoscale, 2014, 6, 4544-4550.	2.8	22

#	Article	IF	CITATIONS
163	Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. Journal of Controlled Release, 2017, 255, 54-61.	4.8	22
164	Enzymatic biofuel cells based on protein engineering: recent advances and future prospects. Biomaterials Science, 2020, 8, 5230-5240.	2.6	22
165	Crystalline transition in Nylon 10 10. Macromolecular Rapid Communications, 2000, 21, 1282-1285.	2.0	21
166	Multi-color cell imaging under identical excitation conditions with salicylideneaniline analogue-based fluorescent nanoparticles. RSC Advances, 2014, 4, 62021-62029.	1.7	21
167	Supramolecular Fluorescent Nanoparticles Constructed via Multiple Nonâ€Covalent Interactions for the Detection of Hydrogen Peroxide in Cancer Cells. Chemistry - A European Journal, 2015, 21, 11427-11434.	1.7	21
168	Fluorescent Unimolecular Conjugated Polymeric Micelles for Biological Applications. Macromolecular Chemistry and Physics, 2016, 217, 266-283.	1.1	21
169	Designing hyperbranched polymers for gene delivery. Molecular Systems Design and Engineering, 2016, 1, 25-39.	1.7	21
170	Preparation and Characterization of Paclitaxel/Chitosan Nanosuspensions for Drug Delivery System and Cytotoxicity Evaluation In Vitro. Advanced Fiber Materials, 2019, 1, 152-162.	7.9	21
171	A mesoporous polydopamine nanoparticle enables highly efficient manganese encapsulation for enhanced MRI-guided photothermal therapy. Nanoscale, 2021, 13, 6439-6446.	2.8	21
172	Using 2D NMR to determine the degree of branching of complicated hyperbranched polymers. Science in China Series B: Chemistry, 2008, 51, 1057-1065.	0.8	20
173	Synergistic therapy of chemotherapeutic drugs and MTH1 inhibitors using a pH-sensitive polymeric delivery system for oral squamous cell carcinoma. Biomaterials Science, 2017, 5, 2068-2078.	2.6	20
174	Paclitaxel/Chitosan Nanosupensions Provide Enhanced Intravesical Bladder Cancer Therapy with Sustained and Prolonged Delivery of Paclitaxel. ACS Applied Bio Materials, 2018, 1, 1992-2001.	2.3	20
175	A NIR-triggered gatekeeper of supramolecular conjugated unimicelles with two-photon absorption for controlled drug release. Chemical Communications, 2019, 55, 6735-6738.	2.2	20
176	Methotrexate–Mn ²⁺ based nanoscale coordination polymers as a theranostic nanoplatform for MRI guided chemotherapy. Biomaterials Science, 2020, 8, 712-719.	2.6	20
177	A highly sensitive and selective fluoride sensor based on a riboswitch-regulated transcription coupled with CRISPR-Cas13a tandem reaction. Chemical Science, 2021, 12, 11740-11747.	3.7	20
178	Cationic long-chain hyperbranched poly(ethylene glycol)s with low charge density for gene delivery. Polymer Chemistry, 2013, 4, 393-401.	1.9	19
179	A Camptothecinâ€Grafted DNA Tetrahedron as a Precise Nanomedicine to Inhibit Tumor Growth. Angewandte Chemie, 2019, 131, 13932-13936.	1.6	19
180	Engineering small molecule nanodrugs to overcome barriers for cancer therapy. View, 2020, 1, 20200062.	2.7	19

#	Article	IF	CITATIONS
181	Synthesis and self-assembly of nonamphiphilic hyperbranched polyoximes. Soft Matter, 2012, 8, 10017.	1.2	18
182	Nanobody-guided targeted delivery of microRNA via nucleic acid nanogel to inhibit the tumor growth. Journal of Controlled Release, 2020, 328, 425-434.	4.8	18
183	Backboneâ€Thermoresponsive Hyperbranched Polyglycerol by Random Copolymerization of Clycidol and 3â€Methylâ€3â€{hydroxymethyl)oxetane. Macromolecular Chemistry and Physics, 2011, 212, 1056-1062.	1.1	17
184	Polygemcitabine nanogels with accelerated drug activation for cancer therapy. Chemical Communications, 2019, 55, 6603-6606.	2.2	17
185	Amphiphilic drug-drug conjugate for cancer therapy with combination of chemotherapeutic and antiangiogenesis drugs. Science China Chemistry, 2020, 63, 35-41.	4.2	17
186	Evolution of physicochemical and antioxidant properties of whey protein isolate during fibrillization process. Food Chemistry, 2021, 357, 129751.	4.2	17
187	Effect of branching architecture on the optical properties of polyazomethines. Polymer Chemistry, 2012, 3, 421-428.	1.9	16
188	Supramolecularly self-assembled nano-twin drug for reversing multidrug resistance. Biomaterials Science, 2018, 6, 2261-2269.	2.6	16
189	Hydroxyapatite–Bovine Serum Albumin–Paclitaxel Nanoparticles for Locoregional Treatment of Osteosarcoma. Advanced Healthcare Materials, 2021, 10, e2000573.	3.9	16
190	Ultrastretchable Polyaniline-Based Conductive Organogel with High Strain Sensitivity. , 2021, 3, 1477-1483.		16
191	Tailoring morphologies of mesoporous polydopamine nanoparticles to deliver high-loading radioiodine for anaplastic thyroid carcinoma imaging and therapy. Nanoscale, 2021, 13, 15021-15030.	2.8	16
192	Rapid Conversion of Co ²⁺ to Co ³⁺ by Introducing Oxygen Vacancies in Co ₃ O ₄ Nanowire Anodes for Nitrogen Removal with Highly Efficient H ₂ Recovery in Urine Treatment. Environmental Science & Technology, 2022, 56, 9693-9701.	4.6	16
193	Construction of biomimetic long-circulation delivery platform encapsulated by zwitterionic polymers for enhanced penetration of blood–brain barrier. RSC Advances, 2017, 7, 20766-20778.	1.7	15
194	Tendon-inspired anti-freezing tough gels. IScience, 2021, 24, 102989.	1.9	15
195	Self-encapsulated enzyme through in-situ growth of polypyrrole for high-performance enzymatic biofuel cell. Chemical Engineering Journal, 2022, 429, 132148.	6.6	15
196	Emission enhancement of GFP chromophore in aggregated state <i>via</i> combination of self-restricted effect and supramolecular host–guest complexation. RSC Advances, 2017, 7, 17980-17987.	1.7	14
197	Site-dependent fluorescence enhanced polymers with a self-restricted GFP chromophore for living cell imaging. Biomaterials Science, 2019, 7, 2421-2429.	2.6	14
198	Rational design of electroactive redox enzyme nanocapsules for high-performance biosensors and enzymatic biofuel cell. Biosensors and Bioelectronics, 2021, 174, 112805.	5.3	14

#	Article	IF	CITATIONS
199	A nucleic acid nanogel dually bears siRNA and CpG motifs for synergistic tumor immunotherapy. Biomaterials Science, 2021, 9, 4755-4764.	2.6	14
200	Transparent, Photothermal, and Icephobic Surfaces via Layerâ€by‣ayer Assembly. Advanced Science, 2022, 9, e2105986.	5.6	14
201	Effect of end groups on complexation kinetics between cyclodextrins and guest polymers. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2050-2057.	2.4	13
202	Sequential drug release for synergistic cancer treatment and immunity promotion. RSC Advances, 2013, 3, 13399.	1.7	13
203	A fluorescent light-up aggregation-induced emission probe for screening gefitinib-sensitive non-small cell lung carcinoma. Biomaterials Science, 2017, 5, 792-799.	2.6	13
204	Aggregation-Induced Emission Fluorophore-Based Molecular Beacon for Differentiating Tumor and Normal Cells by Detecting the Specific and False-Positive Signals. ACS Biomaterials Science and Engineering, 2019, 5, 3618-3630.	2.6	13
205	Topological Effect on Macromonomer Polymerization. Macromolecules, 2021, 54, 6101-6108.	2.2	13
206	Self-assembly of Supramolecular Amphiphile Constructed by Hydrophilic Calix[4]arene Derivative and Phenol Palmitate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 360-367.	1.2	12
207	Facile fabrication and application of Au@MSN nanocomposites with a supramolecular star-copolymer template. Journal of Materials Chemistry, 2011, 21, 12369.	6.7	12
208	Toward Scalable Fabrication of Hierarchical Silica Capsules with Integrated Microâ€; Mesoâ€; and Macropores. Small, 2016, 12, 1797-1805.	5.2	12
209	Inhibition of fibrous dysplasia via blocking Gsα with suramin sodium loaded with an alendronate-conjugated polymeric drug delivery system. Biomaterials Science, 2016, 4, 1113-1122.	2.6	12
210	Multi-template synthesis of hierarchically porous carbon spheres with potential application in supercapacitors. RSC Advances, 2016, 6, 111406-111414.	1.7	12
211	Hybrid Polymerization of Ring-Opening Metathesis and Cross-Metathesis for Polyolefins with Tunable Architectures. Macromolecules, 2018, 51, 9555-9561.	2.2	12
212	In situ localization of alkaline phosphatase activity in tumor cells by an aggregation-induced emission fluorophore-based probes. Bioorganic and Medicinal Chemistry, 2020, 28, 115284.	1.4	12
213	Drugâ€grafted DNA as a novel chemogene for targeted combinatorial cancer therapy. Exploration, 2022, 2, .	5.4	12
214	DNA Base Pairingâ€Inspired Supramolecular Nanodrug Camouflaged by Cancerâ€Cell Membrane for Osteosarcoma Treatment. Small, 2022, 18, .	5.2	12
215	Construction of different supramolecular polymer systems by combining the host–guest and hydrogenâ€bonding interactions. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1114-1120.	2.4	11
216	Rapid formation of highly stretchable and notch-insensitive hydrogels. RSC Advances, 2016, 6, 30570-30576.	1.7	11

XINYUAN ZHU

#	Article	IF	CITATIONS
217	Supramolecular block copolymers for gene delivery: enhancement of transfection efficiency by charge regulation. Chemical Communications, 2017, 53, 12782-12785.	2.2	11
218	Fabrication of Activity-Reporting Glucose Oxidase Nanocapsules with Oxygen-Independent Fluorescence Variation. ACS Applied Materials & amp; Interfaces, 2018, 10, 26005-26015.	4.0	11
219	A new insight into the reversal of multidrug resistance in cancer by nanodrugs. Biomaterials Science, 2019, 7, 3489-3496.	2.6	11
220	In situ Fourier transform infrared spectroscopic study of the conformational changes of high-density poly(ethylene) during the melting and crystallization processes. Journal of Applied Polymer Science, 2006, 100, 4835-4841.	1.3	10
221	Dually stimuliâ€responsive hyperbranched polyethylenimine with LCST transition based on hydrophilic–hydrophobic balance. Journal of Applied Polymer Science, 2013, 127, 3249-3255.	1.3	10
222	A smart gene delivery platform: Cationic oligomer. European Journal of Pharmaceutical Sciences, 2017, 105, 33-40.	1.9	10
223	Synthesis of Multiarm Star Polymer Based on Hyperbranched Polyester Core and Poly(ε-caprolactone) Arms and Its Application in UV-Curable Coating. ACS Omega, 2018, 3, 13928-13934.	1.6	10
224	Carrierâ€Free Delivery of Precise Drug–Chemogene Conjugates for Synergistic Treatment of Drugâ€Resistant Cancer. Angewandte Chemie, 2020, 132, 18100-18106.	1.6	10
225	Nanofabrication within unimolecular nanoreactors. Nanoscale, 2020, 12, 12698-12711.	2.8	10
226	Synthesis and self-assembly of photo-responsive polypeptoid-based copolymers containing azobenzene side chains. Polymer Chemistry, 2021, 12, 1823-1829.	1.9	10
227	Morphology design and control of polymer particles by regulating the droplet flowing mode in microfluidic chips. Polymer Chemistry, 2017, 8, 2953-2958.	1.9	9
228	<p>Affibody-Modified Gd@C-Dots with Efficient Renal Clearance for Enhanced MRI of EGFR Expression in Non-Small-Cell Lung Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 4691-4703.	3.3	9
229	Dual-Self-Restricted GFP Chromophore Analogues with Significantly Enhanced Emission. Journal of Physical Chemistry B, 2020, 124, 871-880.	1.2	9
230	Tracing drug release process with dual-modal hyperbranched polymer-gold nanoparticle complexes. Science China Chemistry, 2016, 59, 1600-1608.	4.2	8
231	Micro-/nanofibers prepared via co-assembly of paclitaxel and dextran. Carbohydrate Polymers, 2017, 157, 613-619.	5.1	8
232	Fluorescent and "breathable―CO2 responsive vesicles inspired from green fluorescent protein. Polymer Chemistry, 2017, 8, 6283-6288.	1.9	7
233	Controlled syntheses of polythiophene nanoparticles with plain and hollow nanostructures templated from unimolecular micelles. Journal of Polymer Science Part A, 2019, 57, 1550-1555.	2.5	7
234	Synthesis of hyperbranched polyolefins and polyethylenes <i>via</i> ADMET of monomers bearing non-selective olefins. Polymer Chemistry, 2019, 10, 6174-6182.	1.9	7

#	Article	IF	CITATIONS
235	Lightâ€Induced Selfâ€Escape of Spherical Nucleic Acid from Endo/Lysosome for Efficient Nonâ€Cationic Gene Delivery. Angewandte Chemie, 2020, 132, 19330-19336.	1.6	7
236	Material Perspective on the Structural Design of Artificial Meat. Advanced Sustainable Systems, 2021, 5, 2100017.	2.7	7
237	Planet-satellite cage hybrids: covalent organic cages encircling metal organic cage. Science China Chemistry, 2022, 65, 858-862.	4.2	7
238	A controlled release system for simultaneous promotion of gene transfection and antitumor effects. RSC Advances, 2014, 4, 64596-64600.	1.7	6
239	Investigation of the Formation Process of PNIPAM-Based Ionic Microgels. ACS Omega, 2017, 2, 8788-8793.	1.6	6
240	Light-Trigerred Cellular Epigenetic Molecule Release To Reverse Tumor Multidrug Resistance. Bioconjugate Chemistry, 2018, 29, 1344-1351.	1.8	6
241	Stabilization capacity of PNIPAM microgels as particulate stabilizer in dispersion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 789-794.	2.3	6
242	Role Transformation of Poly(<i>N</i> -isopropylacrylamide) Microgels from Stabilizer to Seed in Dispersion Polymerization by Controlling the Water Content in Methanol–Water Mixture. Langmuir, 2018, 34, 3420-3425.	1.6	6
243	Endogenous nucleotide as drug carrier: base-paired guanosine-5′-monophosphate:pemetrexed vesicles with enhanced anticancer capability. Science China Chemistry, 2020, 63, 244-253.	4.2	6
244	Color-convertible fluorescent nanoprobe for Parkinson's disease diagnosis. Chemical Engineering Journal, 2022, 429, 132368.	6.6	6
245	A new twoâ€phase route to cadmium sulfide quantum dots using amphiphilic hyperbranched polymers as unimolecular nanoreactors. Journal of Applied Polymer Science, 2011, 120, 991-997.	1.3	5
246	Facile preparation of cds quantum dots using hyperbranched poly(amidoamine)s with hydrophobic endâ€groups as nanoreactors. Journal of Applied Polymer Science, 2011, 122, 1077-1083.	1.3	5
247	Synthesis of nanostructured barium phosphate and its application in micro-computed tomography of mouse brain vessels in ex vivo. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	5
248	Supramolecular dendritic polymers for diagnostic and theranostic applications. Science China Materials, 2018, 61, 1444-1453.	3.5	5
249	An efficient method for CTCs screening with excellent operability by integrating Parsortixâ,,¢-like cell separation chip and selective size amplification. Biomedical Microdevices, 2018, 20, 51.	1.4	5
250	Novel target NIR-fluorescent polymer for living tumor cell imaging. Polymer Chemistry, 2019, 10, 77-85.	1.9	5
251	A Fluorescent Cocktail Strategy for Differentiating Tumor, Inflammation, and Normal Cells by Detecting mRNA and H ₂ O ₂ . ACS Biomaterials Science and Engineering, 2019, 5, 1023-1033.	2.6	5
252	Update on the development of molecular imaging and nanomedicine in China: Optical imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1660.	3.3	5

#	Article	IF	CITATIONS
253	Journey of Poly(ethylene Glycol) in Living Cells. ACS Applied Materials & Interfaces, 2021, 13, 40267-40277.	4.0	5
254	Crystalline transition in Nylon 10 10. Macromolecular Rapid Communications, 2000, 21, 1282-1285.	2.0	5
255	Polyelectrolyte complexes formed by hyperbranched poly(sulfone-amine) hydrochlorate and poly(sodium acrylate). Journal of Applied Polymer Science, 2007, 104, 2323-2329.	1.3	4
256	Supramolecular end-group separation of linear polymers with different terminals through host–guest interaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 61, 83-88.	1.6	4
257	Anti-biofouling therapeutic nanoparticles with removable shell and highly efficient internalization by cancer cells. Biomaterials Science, 2019, 7, 336-346.	2.6	4
258	Synthesis of hyperbranched polyolefin with well-defined terminal functional group. Polymer, 2022, 242, 124571.	1.8	4
259	Fabrication of porous scaffolds with protein nanogels. Science China Chemistry, 2011, 54, 961-967.	4.2	3
260	Hybrid Polymerization of Reversible Complexation Mediated Polymerization (RCMP) and Reversible Addition–Fragmentation Chain-Transfer (RAFT) Polymerization. Macromolecules, 2020, 53, 9345-9352.	2.2	3
261	Grafting multi-maleimides on antisense oligonucleotide to enhance its cellular uptake and gene silencing capability. Chemical Communications, 2020, 56, 7439-7442.	2.2	3
262	Sulfanion-initiated open-vessel anionic ring-opening polymerization (AROP) of N-sulfonyl aziridines. Science China Chemistry, 2021, 64, 1778-1785.	4.2	3
263	Advancing from unimechanism polymerization to multimechanism polymerization: binary polymerization. Science China Chemistry, 2022, 65, 602-610.	4.2	3
264	Preparation, characterization and mechanism study of small size core-shell polymer nanoparticles dissociated from poly(N-isopropylacrylamide) ionic microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 184-191.	2.3	2
265	Short-term urea cycle inhibition in rat liver cells induced by polyethylene glycol. Biomaterials Science, 2018, 6, 2896-2904.	2.6	2
266	Rational Optimization of Tether Binding Length between the Redox Groups and the Polymer Backbone in Electroactive Redox Enzyme Nanocapsules for High-Performance Enzymatic Biofuel Cell. ACS Applied Energy Materials, 2021, 4, 5034-5042.	2.5	2
267	<scp>l</scp> -Asparaginase <i>In Situ</i> Encapsulated into Zwitterionic Nanocapsules with a Prolonged Half-Life. ACS Applied Polymer Materials, 2022, 4, 2757-2766.	2.0	2
268	The synthesis and oligomerization of a monofunctional bottlebrush-shaped polymer terminated with an azide group. Polymer Chemistry, 2019, 10, 5168-5171.	1.9	1
269	Engineering a Floxuridine-integrated RNA Prism as Precise Nanomedicine for Drug Delivery. Chemical Research in Chinese Universities, 2020, 36, 274-280.	1.3	1
270	A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery. Chemical Research in Chinese Universities, 2021, 37, 906-913.	1.3	1

#	Article	IF	CITATIONS
271	Complexing the Pre-assembled Brush-like siRNA with Poly(β-amino ester) for Efficient Gene Silencing. ACS Applied Bio Materials, 2022, 5, 1857-1867.	2.3	1
272	Role transition of PNIPAM ionic microgels in dispersion polymerization by changing the monomer type. Polymer, 2019, 175, 171-176.	1.8	0
273	Inorganic-Ligand Quantum Dots Meet Inorganic-Ligand Semiconductor Nanoplatelets: A Promising Fusion to Construct All-Inorganic Assembly. Inorganic Chemistry, 2021, 60, 6994-6998.	1.9	0