Fabiola PantÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3780063/publications.pdf Version: 2024-02-01

<u> Γαριοία </u>Ραντ<u></u>Δ2

#	Article	IF	CITATIONS
1	Electro-spun graphene-enriched carbon fibres with high nitrogen-contents for electrochemical water desalination. Desalination, 2018, 428, 40-49.	4.0	34
2	Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries. Electrochimica Acta, 2018, 269, 367-377.	2.6	26
3	CO ₂ sensing properties of electro-spun Ca-doped ZnO fibres. Nanotechnology, 2018, 29, 305501.	1.3	24
4	Electro-spun Co3O4 anode material for Na-ion rechargeable batteries. Solid State Ionics, 2017, 309, 41-47.	1.3	22
5	Electrospun C/GeO 2 paper-like electrodes forÂflexible Li-ion batteries. International Journal of Hydrogen Energy, 2017, 42, 28102-28112.	3.8	22
6	Are Electrospun Fibrous Membranes Relevant Electrode Materials for Liâ€Ion Batteries? The Case of the C/Ge/GeO ₂ Composite Fibers. Advanced Functional Materials, 2018, 28, 1800938.	7.8	22
7	Photocatalytic degradation of methylene blue dye by porous zinc oxide nanofibers prepared via electrospinning: When defects become merits. Applied Surface Science, 2021, 557, 149830.	3.1	22
8	Evaluation of the electrochemical performance of electrospun transition metal oxide-based electrode nanomaterials for water CDI applications. Electrochimica Acta, 2019, 309, 125-139.	2.6	20
9	Are Electrospun Carbon/Metal Oxide Composite Fibers Relevant Electrode Materials for Li-Ion Batteries?. Journal of the Electrochemical Society, 2016, 163, A2930-A2937.	1.3	19
10	Bacterial-cellulose-derived carbonaceous electrode materials for water desalination via capacitive method: The crucial role of defect sites. Desalination, 2020, 492, 114596.	4.0	18
11	Structure, Defects, and Magnetism of Electrospun Hematite Nanofibers Silica-Coated by Atomic Layer Deposition. Langmuir, 2020, 36, 1305-1319.	1.6	18
12	High-Entropy Spinel Oxides Produced via Sol-Gel and Electrospinning and Their Evaluation as Anodes in Li-Ion Batteries. Applied Sciences (Switzerland), 2022, 12, 5965.	1.3	18
13	Effect of calcium- and/or aluminum-incorporation on morphological, structural and photoluminescence properties of electro-spun zinc oxide fibers. Materials Research Bulletin, 2017, 92, 9-18.	2.7	15
14	Comparative life cycle assessment of Fe2O3-based fibers as anode materials for sodium-ion batteries. Environment, Development and Sustainability, 2021, 23, 6786-6799.	2.7	12
15	Photocatalytic Degradation of Methylene Blue Dye by Electrospun Binary and Ternary Zinc and Titanium Oxide Nanofibers. Applied Sciences (Switzerland), 2021, 11, 9720.	1.3	9
16	Effect of Ti- or Si-doping on nanostructure and photo-electro-chemical activity of electro-spun iron oxide fibres. International Journal of Hydrogen Energy, 2017, 42, 28070-28081.	3.8	8
17	A Neural Network Approach for Predicting the Diameters of Electrospun Polyvinylacetate (PVAc) Nanofibers. Communications in Computer and Information Science, 2017, , 27-38.	0.4	5
18	Evaluation of Electrospun Self-Supporting Paper-Like Fibrous Membranes as Oil Sorbents. Membranes, 2021, 11, 515.	1.4	2