Joanna Rorbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3779993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrially targeted <scp>ZFN</scp> s for selective degradation of pathogenic mitochondrial genomes bearing largeâ€scale deletions or point mutations. EMBO Molecular Medicine, 2014, 6, 458-466.	6.9	237
2	Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nature Genetics, 2013, 45, 214-219.	21.4	198
3	Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3. Nature Communications, 2016, 7, 12039.	12.8	178
4	A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO Journal, 2010, 29, 1116-1125.	7.8	167
5	Structures of the human mitochondrial ribosome in native states of assembly. Nature Structural and Molecular Biology, 2017, 24, 866-869.	8.2	140
6	ELAC2 Mutations Cause a Mitochondrial RNA Processing Defect Associated with Hypertrophic Cardiomyopathy. American Journal of Human Genetics, 2013, 93, 211-223.	6.2	127
7	Mutations in GTPBP3 Cause a Mitochondrial Translation Defect Associated with Hypertrophic Cardiomyopathy, Lactic Acidosis, and Encephalopathy. American Journal of Human Genetics, 2014, 95, 708-720.	6.2	123
8	The post-transcriptional life of mammalian mitochondrial RNA. Biochemical Journal, 2012, 444, 357-373.	3.7	114
9	mtRF1a Is a Human Mitochondrial Translation Release Factor Decoding the Major Termination Codons UAA and UAG. Molecular Cell, 2007, 27, 745-757.	9.7	112
10	The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Research, 2008, 36, 5787-5799.	14.5	102
11	MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Molecular Biology of the Cell, 2014, 25, 2542-2555.	2.1	99
12	Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Research, 2016, 44, 7804-7816.	14.5	97
13	PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Research, 2011, 39, 7750-7763.	14.5	91
14	Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia, 2010, 58, 1827-1837.	4.9	83
15	TRMT5 Mutations Cause a Defect in Post-transcriptional Modification of Mitochondrial tRNA Associated with Multiple Respiratory-Chain Deficiencies. American Journal of Human Genetics, 2015, 97, 319-328.	6.2	83
16	Myosin VI-Dependent Actin Cages Encapsulate Parkin-Positive Damaged Mitochondria. Developmental Cell, 2018, 44, 484-499.e6.	7.0	77
17	Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Research, 2008, 36, 3065-3074.	14.5	74
18	Maturation of selected human mitochondrial tRNAs requires deadenylation. ELife, 2017, 6, .	6.0	72

2

JOANNA RORBACH

#	Article	IF	CITATIONS
19	C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Research, 2012, 40, 4097-4109.	14.5	64
20	Human mitochondrial ribosomes can switch their structural RNA composition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12198-12201.	7.1	64
21	Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome. Human Molecular Genetics, 2017, 26, 4257-4266.	2.9	63
22	Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Research, 2013, 41, 2354-2369.	14.5	56
23	MPV17L2 is required for ribosome assembly in mitochondria. Nucleic Acids Research, 2014, 42, 8500-8515.	14.5	56
24	Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. MBio, 2016, 7, e00029.	4.1	55
25	Amino Acid Starvation Has Opposite Effects on Mitochondrial and Cytosolic Protein Synthesis. PLoS ONE, 2014, 9, e93597.	2.5	48
26	Distinct pre-initiation steps in human mitochondrial translation. Nature Communications, 2020, 11, 2932.	12.8	45
27	Mitochondria: Mitochondrial RNA metabolism and human disease. International Journal of Biochemistry and Cell Biology, 2013, 45, 845-849.	2.8	34
28	Seropositivity in blood donors and pregnant women during the first year of SARSâ€CoVâ€2 transmission in Stockholm, Sweden. Journal of Internal Medicine, 2021, 290, 666-676.	6.0	34
29	The human RNA-binding protein RBFA promotes the maturation of the mitochondrial ribosome. Biochemical Journal, 2017, 474, 2145-2158.	3.7	33
30	Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell Reports, 2021, 35, 109024.	6.4	33
31	Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature, 2022, 606, 603-608.	27.8	32
32	Human Mitoribosome Biogenesis and Its Emerging Links to Disease. International Journal of Molecular Sciences, 2021, 22, 3827.	4.1	31
33	Macropinocytic entry of isolated mitochondria in epidermal growth factor-activated human osteosarcoma cells. Scientific Reports, 2017, 7, 12886.	3.3	30
34	Structural basis for late maturation steps of the human mitoribosomal large subunit. Nature Communications, 2021, 12, 3673.	12.8	30
35	How do mammalian mitochondria synthesize proteins?. Biochemical Society Transactions, 2007, 35, 1290-1291.	3.4	28
36	C6orf203 is an RNA-binding protein involved in mitochondrial protein synthesis. Nucleic Acids Research, 2019, 47, 9386-9399.	14.5	26

JOANNA RORBACH

#	Article	IF	CITATIONS
37	MitoRibo-Tag Mice Provide a Tool for InÂVivo Studies of Mitoribosome Composition. Cell Reports, 2019, 29, 1728-1738.e9.	6.4	24
38	Polyadenylation in Bacteria and Organelles. Methods in Molecular Biology, 2014, 1125, 211-227.	0.9	23
39	Human GTPBP5 is involved in the late stage of mitoribosome large subunit assembly. Nucleic Acids Research, 2021, 49, 354-370.	14.5	21
40	Methylation of Ribosomal RNA: A Mitochondrial Perspective. Frontiers in Genetics, 2020, 11, 761.	2.3	20
41	Human mitochondrial ribosomes can switch structural tRNAs – but when and why?. RNA Biology, 2017, 14, 1668-1671.	3.1	18
42	Quantitative density gradient analysis by mass spectrometry (qDGMS) and complexome profiling analysis (ComPrAn) R package for the study of macromolecular complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148399.	1.0	16
43	Aberrant splicing in neuroblastoma generates RNA-fusion transcripts and provides vulnerability to spliceosome inhibitors. Nucleic Acids Research, 2021, 49, 2509-2521.	14.5	12
44	YbeY is required for ribosome small subunit assembly and tRNA processing in human mitochondria. Nucleic Acids Research, 2021, 49, 5798-5812.	14.5	8
45	Differential processing and localization of human Nocturnin controls metabolism of mRNA and nicotinamide adenine dinucleotide cofactors. Journal of Biological Chemistry, 2020, 295, 15112-15133.	3.4	6
46	Mitoribosome Profiling from Human Cell Culture: A High Resolution View of Mitochondrial Translation. Methods in Molecular Biology, 2021, 2192, 183-196.	0.9	5
47	Impaired plasma cell differentiation associates with increased oxidative metabolism in lήBNS-deficient B cells. Cellular Immunology, 2022, 375, 104516.	3.0	5
48	Ribosome origami. Nature Structural and Molecular Biology, 2017, 24, 879-881.	8.2	2
49	O.24 Loss of function of MGME1, a novel player in mitochondrial DNA replication, causes a distinct autosomal recessive mitochondrial disorder. Neuromuscular Disorders, 2013, 23, 852.	0.6	1
50	Polyadenylation of mt mRNA: Identification of novel deadenylase of human mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 105.	1.0	0