Zhuxian Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3779470/publications.pdf Version: 2024-02-01

ΖΗΠΧΙΔΝ ΥΔΝΟ

#	Article	IF	CITATIONS
1	Zeolitic imidazolate framework materials: recent progress in synthesis and applications. Journal of Materials Chemistry A, 2014, 2, 16811-16831.	5.2	753
2	Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-like Carbon Materials. Journal of the American Chemical Society, 2007, 129, 1673-1679.	6.6	568
3	Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A, 2013, 1, 9365.	5.2	320
4	Templated nanoscale porous carbons. Nanoscale, 2010, 2, 639.	2.8	299
5	Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template. Advanced Materials, 2004, 16, 727-732.	11.1	279
6	Preparation and Hydrogen Storage Properties of Zeolite-Templated Carbon Materials Nanocast via Chemical Vapor Deposition:Â Effect of the Zeolite Template and Nitrogen Doping. Journal of Physical Chemistry B, 2006, 110, 18424-18431.	1.2	243
7	Mesostructured Hollow Spheres of Graphitic N-Doped Carbon Nanocast from Spherical Mesoporous Silica. Journal of Physical Chemistry B, 2004, 108, 19293-19298.	1.2	138
8	Recent Advances in Metal–Organic Frameworks Derived Nanocomposites for Photocatalytic Applications in Energy and Environment. Advanced Science, 2021, 8, e2100625.	5.6	118
9	High temperature thermal stabilization of alumina modified by lanthanum species. Applied Catalysis A: General, 2001, 205, 159-172.	2.2	115
10	High Surface Area Silicon Carbide Whiskers and Nanotubes Nanocast Using Mesoporous Silica. Chemistry of Materials, 2004, 16, 3877-3884.	3.2	102
11	Preparation of 3D graphene-based architectures and their applications in supercapacitors. Progress in Natural Science: Materials International, 2015, 25, 554-562.	1.8	87
12	Simultaneous Control of Morphology and Porosity in Nanoporous Carbon:  Graphitic Mesoporous Carbon Nanorods and Nanotubules with Tunable Pore Size. Chemistry of Materials, 2006, 18, 140-148.	3.2	85
13	Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities. Microporous and Mesoporous Materials, 2018, 257, 1-8.	2.2	61
14	Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates. Microporous and Mesoporous Materials, 2005, 86, 69-80.	2.2	54
15	Aligned N-Doped Carbon Nanotube Bundles Prepared via CVD Using Zeolite Substrates. Chemistry of Materials, 2005, 17, 4502-4508.	3.2	52
16	Molecularly Ordered Ethylene-Bridged Periodic Mesoporous Organosilica Spheres with Tunable Micrometer Sizes. Chemistry of Materials, 2006, 18, 1141-1148.	3.2	52
17	Polyoxometallates@zeolitic-imidazolate-framework derived bimetallic tungsten-cobalt sulfide/porous carbon nanocomposites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution. Electrochimica Acta, 2020, 330, 135335.	2.6	52
18	Three dimensional (3D) flexible graphene foam/polypyrrole composite: towards highly efficient supercapacitors. RSC Advances, 2015, 5, 3999-4008.	1.7	44

ZHUXIAN YANG

#	Article	IF	CITATIONS
19	Surface functionalized N-C-TiO2/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H2 generation. Journal of Energy Chemistry, 2021, 57, 485-495.	7.1	38
20	Bimetal–organic framework derived multi-heterostructured TiO ₂ /Cu _x O/C nanocomposites with superior photocatalytic H ₂ generation performance. Journal of Materials Chemistry A, 2021, 9, 4103-4116.	5.2	37
21	Periodic mesoporous organosilica mesophases are versatile precursors for the direct preparation of mesoporous silica/carbon composites, carbon and silicon carbide materials. Journal of Materials Chemistry, 2006, 16, 3417.	6.7	36
22	CVD Nanocasting Routes to Zeoliteâ€Templated Carbons for Hydrogen Storage. Chemical Vapor Deposition, 2010, 16, 322-328.	1.4	32
23	Improved hydrogen release from ammonia borane confined in microporous carbon with narrow pore size distribution. Journal of Materials Chemistry A, 2017, 5, 15395-15400.	5.2	31
24	Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis. Journal of Materials Science and Technology, 2022, 101, 49-59.	5.6	29
25	Bimetallic Fe-Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation. Journal of Materials Science and Technology, 2021, 84, 76-85.	5.6	26
26	Preparation and gases storage capacities of N-doped porous activated carbon materials derived from mesoporous polymer. Materials Chemistry and Physics, 2013, 141, 318-323.	2.0	25
27	Designing 3D graphene networks via a 3D-printed Ni template. RSC Advances, 2015, 5, 29397-29400.	1.7	25
28	Novel mesoporous silicoaluminophosphates as highly active and selective materials in the Beckmann rearrangement of cyclohexanone and cyclododecanone oximes. Journal of Catalysis, 2007, 252, 1-10.	3.1	23
29	Comparison of effect of La-modification on the thermostabilities of alumina and alumina-supported Pd catalysts prepared from different alumina sources. Applied Catalysis B: Environmental, 2001, 29, 185-194.	10.8	22
30	A simple method for the production of highly ordered porous carbon materials with increased hydrogen uptake capacities. International Journal of Hydrogen Energy, 2013, 38, 5039-5052.	3.8	22
31	Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Frontiers of Chemical Science and Engineering, 2021, 15, 1487-1499.	2.3	22
32	How the Toughest Inorganic Fullerene Cages Absorb Shockwave Pressures in a Protective Nanocomposite: Experimental Evidence from Two <i>In Situ</i> Investigations. ACS Nano, 2017, 11, 8114-8121.	7.3	20
33	Novel graphitic carbon coated IF-WS ₂ reinforced poly(ether ether ketone) nanocomposites. RSC Advances, 2017, 7, 35265-35273.	1.7	19
34	Bimetallic Co–Mo sulfide/carbon composites derived from polyoxometalate encapsulated polydopamine-decorated ZIF nanocubes for efficient hydrogen and oxygen evolution. Nanoscale, 2022, 14, 4726-4739.	2.8	17
35	Enrichment of low concentration methane: an overview of ventilation air methane. Journal of Materials Chemistry A, 2022, 10, 6397-6413.	5.2	17
36	Synthesis of hollow spherical mesoporous N-doped carbon materials with graphitic framework. Studies in Surface Science and Catalysis, 2005, , 565-572.	1.5	14

ZHUXIAN YANG

#	Article	IF	CITATIONS
37	Probing the effect of the carbonisation process on the textural properties and morphology of mesoporous carbons. Microporous and Mesoporous Materials, 2008, 113, 378-384.	2.2	13
38	A generic method to synthesise graphitic carbon coated nanoparticles in large scale and their derivative polymer nanocomposites. Scientific Reports, 2017, 7, 11829.	1.6	13
39	Interface and properties of inorganic fullerene tungsten sulphide nanoparticle reinforced poly (ether ether ketone) nanocomposites. Results in Physics, 2017, 7, 2417-2424.	2.0	12
40	A Systematic Study on the PrepÂaration and Hydrogen Storage of Zeolite 13Xâ€Templated Microporous Carbons. European Journal of Inorganic Chemistry, 2016, 2016, 2152-2158.	1.0	11
41	The effect of complex halides and binary halides on hydrogen release for the 2LiBH4:1MgH2 system. Faraday Discussions, 2011, 151, 133.	1.6	10
42	Hydrogen adsorption properties of in-situ synthesized Pt-decorated porous carbons templated from zeolite EMC-2. International Journal of Hydrogen Energy, 2020, 45, 25086-25095.	3.8	9
43	One-step construction of porous Ni/Co metal/oxide nanocubes for highly efficient oxygen evolution. Electrochemistry Communications, 2018, 93, 191-196.	2.3	8
44	Concentration of unconventional methane resources using microporous membranes: Process assessment and scale-up. Journal of Natural Gas Science and Engineering, 2020, 81, 103420.	2.1	8
45	Porous N-doped carbon with various hollow-cored morphologies nanocast using zeolite templates via chemical vapour deposition. Studies in Surface Science and Catalysis, 2005, 156, 573-580.	1.5	7
46	Self-Assembled Ultralarge Millimeter-Sized Graphitic Carbon Rods Grown on Mesoporous Silica Substrate. Chemistry of Materials, 2007, 19, 6317-6322.	3.2	5
47	The preparation of SiC nanowires reinforced porous carbon nanocomposites by a simple method. Materials Chemistry and Physics, 2018, 219, 258-262.	2.0	5
48	Novel Fibrous Catalyst in Advanced Oxidation of Photographic Processing Effluents. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 129-141.	0.9	4
49	Phase Behavior and Thermo-Mechanical Properties of IF-WS2 Reinforced PP–PET Blend-Based Nanocomposites. Polymers, 2020, 12, 2342.	2.0	4
50	Preparation of versatile silica/carbon nanocomposites via carbonization of ethyl-bridged periodic mesoporous organosilica. Studies in Surface Science and Catalysis, 2007, , 393-396.	1.5	1
51	EFFECT OF CARBONISATION HEATING RAMP RATE ON THE PROPERTIES OF ORDERED MESOPOROUS CARBONS. , 2008, , .		0
52	Permeability studies on 3D Ni foam/graphene composites. Journal Physics D: Applied Physics, 2017, 50, 385303.	1.3	0