Ana C Coan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3778831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gut microbiome in neuropsychiatric disorders. Arquivos De Neuro-Psiquiatria, 2022, 80, 192-207.	0.3	3
2	Utility of Functional MRI and Magnetoencephalography in the Diagnosis of Infantile Spasms and Hypsarrhythmia. Journal of Clinical Neurophysiology, 2022, Publish Ahead of Print, .	0.9	0
3	Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain, 2022, 145, 1962-1977.	3.7	9
4	Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia, 2021, 62, 2385-2394.	2.6	20
5	Cerebral Structure and Function in Stroke-free Patients with Atrial Fibrillation. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105887.	0.7	3
6	Gas6 drives Zika virus-induced neurological complications in humans and congenital syndrome in immunocompetent mice. Brain, Behavior, and Immunity, 2021, 97, 260-274.	2.0	10
7	Editorial: Advances and Applications of the EEG-fMRI Technique on Epilepsies. Frontiers in Neurology, 2021, 12, 827705.	1.1	0
8	Limited seizures, but a broader impact. Arquivos De Neuro-Psiquiatria, 2021, 79, 1068-1069.	0.3	0
9	Tracking Epilepsy Disease Progression with Neuroimaging. , 2019, , 217-228.		0
10	Brain morphological abnormalities in genetic generalized epilepsies: The starting point?. Epilepsia, 2019, 60, 1279-1280.	2.6	0
11	Multimodal Analysis of SCN1A Missense Variants Improves Interpretation of Clinically Relevant Variants in Dravet Syndrome. Frontiers in Neurology, 2019, 10, 289.	1.1	9
12	Neuropsychological and neuroimaging evidences of cerebral dysfunction in stroke-free patients with atrial fibrillation: A review. Journal of the Neurological Sciences, 2019, 399, 172-181.	0.3	9
13	Predicting the Outcome of Surgical Interventions for Epilepsy Using Imaging Biomarkers. , 2019, , 169-180.		1
14	Dysregulation of <i>NEUROG2</i> plays a key role in focal cortical dysplasia. Annals of Neurology, 2018, 83, 623-635.	2.8	22
15	Default Mode Network Disruption in Stroke-Free Patients with Atrial Fibrillation. Cerebrovascular Diseases, 2018, 45, 78-84.	0.8	10
16	ls inpatient ictal videoâ€electroencephalographic monitoring mandatory in mesial temporal lobe epilepsy with unilateral hippocampal sclerosis? A prospective study. Epilepsia, 2018, 59, 410-419.	2.6	22
17	Epilepsy for primary health care: a costâ€effective Latin American Eâ€ l earning initiative. Epileptic Disorders, 2018, 20, 386-395.	0.7	27
18	Differences in Cortical Structure and Functional MRI Connectivity in High Functioning Autism. Frontiers in Neurology, 2018, 9, 539.	1.1	64

#	Article	IF	CITATIONS
19	Higher IQ in juvenile myoclonic epilepsy: Dodging cognitive obstacles and "masking―impairments. Epilepsy and Behavior, 2018, 86, 124-130.	0.9	9
20	Potential Clinical Benefits of CBD-Rich Cannabis Extracts Over Purified CBD in Treatment-Resistant Epilepsy: Observational Data Meta-analysis. Frontiers in Neurology, 2018, 9, 759.	1.1	124
21	Toward a Multimodal Diagnostic Exploratory Visualization of Focal Cortical Dysplasia. IEEE Computer Graphics and Applications, 2018, 38, 73-89.	1.0	3
22	Electroencephalography Patterns and Prognosis in Acute Ischemic Stroke. Cerebrovascular Diseases, 2017, 44, 128-134.	0.8	15
23	Concurrent mood and anxiety disorders are associated with pharmacoresistant seizures in patients with MTLE. Epilepsia, 2017, 58, 1268-1276.	2.6	75
24	Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy. NeuroImage: Clinical, 2017, 16, 52-57.	1.4	15
25	Abnormality in hippocampal signal intensity predicts atrophy in patients with systemic lupus erythematosus. Lupus, 2017, 26, 633-639.	0.8	8
26	MicroRNA hsa-miR-134 is a circulating biomarker for mesial temporal lobe epilepsy. PLoS ONE, 2017, 12, e0173060.	1.1	45
27	Translation and validation into Brazilian Portuguese of the Spastic Paraplegia Rating Scale (SPRS). Arquivos De Neuro-Psiquiatria, 2016, 74, 489-494.	0.3	18
28	Progression of gray matter atrophy in seizureâ€free patients with temporal lobe epilepsy. Epilepsia, 2016, 57, 621-629.	2.6	60
29	In response: Brain atrophy in seizureâ€free temporal lobe epilepsy: Implications for predicting pharmacoresistance. Epilepsia, 2016, 57, 856-857.	2.6	0
30	Largeâ€scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Human Brain Mapping, 2016, 37, 3137-3152.	1.9	107
31	Delineating behavioral and cognitive phenotypes in juvenile myoclonic epilepsy: Are we missing the forest for the trees?. Epilepsy and Behavior, 2016, 54, 95-99.	0.9	40
32	EEG-fMRI in the presurgical evaluation of temporal lobe epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 642-649.	0.9	69
33	Aberrant topological patterns of brain structural network in temporal lobe epilepsy. Epilepsia, 2015, 56, 1992-2002.	2.6	55
34	Asymptomatic Carotid Stenosis is Associated with Gray and White Matter Damage. International Journal of Stroke, 2015, 10, 1197-1203.	2.9	22
35	Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice. Arquivos De Neuro-Psiquiatria, 2015, 73, 946-958.	0.3	11
36	Central nervous system involvement in sarcoidosis. Radiologia Brasileira, 2015, 48, 334-335.	0.3	4

#	Article	IF	CITATIONS
37	Patterns of seizure control in patients with mesial temporal lobe epilepsy with and without hippocampus sclerosis. Arquivos De Neuro-Psiquiatria, 2015, 73, 79-82.	0.3	11
38	T2 hyperintense signal in patients with temporal lobe epilepsy with MRI signs of hippocampal sclerosis and in patients with temporal lobe epilepsy with normal MRI. Epilepsy and Behavior, 2015, 46, 103-108.	0.9	10
39	Distinct domains of impulsivity are impaired in juvenile myoclonic epilepsy but not in temporal lobe epilepsy. Epilepsy and Behavior, 2015, 45, 44-48.	0.9	16
40	White matter abnormalities associate with type and localization of focal epileptogenic lesions. Epilepsia, 2015, 56, 125-132.	2.6	63
41	Neurocysticercotic Calcifications and Hippocampal Sclerosis: A Case-Control Study. PLoS ONE, 2015, 10, e0131180.	1.1	17
42	Frequent Seizures Are Associated with a Network of Gray Matter Atrophy in Temporal Lobe Epilepsy with or without Hippocampal Sclerosis. PLoS ONE, 2014, 9, e85843.	1.1	59
43	Hippocampal dysplasia with balloon cells: case report and discussion on classification. Journal of Neurology, 2014, 261, 2022-2024.	1.8	3
44	Distinct functional and structural <scp>MRI</scp> abnormalities in mesial temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsia, 2014, 55, 1187-1196.	2.6	33
45	Neuropsychiatric symptoms in Alzheimer's disease are related to functional connectivity alterations in the salience network. Human Brain Mapping, 2014, 35, 1237-1246.	1.9	137
46	Memory impairment is not necessarily related to seizure frequency in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia, 2014, 55, 1197-1204.	2.6	19
47	Pre-alignment for Co-registration in Native Space. , 2014, , .		1
48	3T MRI Quantification of Hippocampal Volume and Signal in Mesial Temporal Lobe Epilepsy Improves Detection of Hippocampal Sclerosis. American Journal of Neuroradiology, 2014, 35, 77-83.	1.2	131
49	Longitudinal analysis of hippocampal T2 relaxometry in FMTLE. Epilepsy and Behavior, 2014, 36, 154-158.	0.9	7
50	Epilepsy as progressive disorders: What is the evidence that can guide our clinical decisions and how can neuroimaging help?. Epilepsy and Behavior, 2013, 26, 313-321.	0.9	33
51	Amygdala enlargement occurs in patients with mesial temporal lobe epilepsy and hippocampal sclerosis with early epilepsy onset. Epilepsy and Behavior, 2013, 29, 390-394.	0.9	30
52	Multimodal neuroimaging: Potential biomarkers for response to antiepileptic drugs?. Epilepsia, 2013, 54, 67-70.	2.6	3
53	Reply:. American Journal of Neuroradiology, 2013, 34, E116-E116.	1.2	0
54	Amygdala Enlargement in Patients with Mesial Temporal Lobe Epilepsy without Hippocampal Sclerosis. Frontiers in Neurology, 2013, 4, 166.	1.1	34

#	Article	IF	CITATIONS
55	Query Tools for Interactive Exploration of 3D Neuroimages: Cropping, Probe and Lens. , 2013, , .		2
56	Understanding the spectrum of temporal lobe epilepsy: contributions for the development of individualized therapies. Expert Review of Neurotherapeutics, 2013, 13, 1383-1394.	1.4	19
57	Comorbidities associated with epilepsy and headaches. Arquivos De Neuro-Psiquiatria, 2012, 70, 274-277.	0.3	3
58	Análise comparativa do volume hipocampal e talâmico em pacientes com epilepsia de lobo temporal mesial com e sem resposta adequada ao tratamento farmacológico. Journal of Epilepsy and Clinical Neurophysiology, 2012, 18, 41-44.	0.1	0
59	MicroRNA expression profile in epilepsy: breaking molecular barriers. Journal of Epilepsy and Clinical Neurophysiology, 2012, 18, 57-59.	0.1	1
60	Longitudinal MRI Volumetric Evaluation in Patients with Familial Mesial Temporal Lobe Epilepsy. Frontiers in Neurology, 2011, 2, 5.	1.1	16
61	Relatório do IX Encontro Nacional de Associações e Grupos de Pacientes com Epilepsia. Journal of Epilepsy and Clinical Neurophysiology, 2011, 17, 30-32.	0.1	0
62	Relatório do VIII Encontro Nacional de Associações e Grupos de Pacientes com Epilepsia. Journal of Epilepsy and Clinical Neurophysiology, 2010, 16, 122-124.	0.1	0
63	Relatório do VII Encontro Nacional de Associações e Grupos de Pacientes com Epilepsia. Journal of Epilepsy and Clinical Neurophysiology, 2009, 15, 94-97.	0.1	2
64	Seizure frequency and lateralization affect progression of atrophy in temporal lobe epilepsy. Neurology, 2009, 73, 834-842.	1.5	152
65	Relatório do VI Encontro Nacional de Associações Grupos de Pacientes com Epilepsia. Journal of Epilepsy and Clinical Neurophysiology, 2008, 14, 85-88.	0.1	5
66	VI Semana Nacional de Conscientização da Epilepsia em Campinas. Journal of Epilepsy and Clinical Neurophysiology, 2008, 14, 197-199.	0.1	1
67	V Semana Nacional de Conscientização da Epilepsia em Campinas. Journal of Epilepsy and Clinical Neurophysiology, 2007, 13, 197-200.	0.1	5
68	Gray matter atrophy associated with duration of temporal lobe epilepsy. NeuroImage, 2006, 32, 1070-1079.	2.1	119
69	Hippocampal abnormalities and seizure recurrence after antiepileptic drug withdrawal. Neurology, 2006, 67, 134-136.	1.5	49
70	T2â€Weighted and T2 Relaxometry Images in Patients with Medial Temporal Lobe Epilepsy. Journal of Neuroimaging, 2006, 16, 260-265.	1.0	11
71	Patterns of hippocampal abnormalities in malformations of cortical development. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 77, 367-371.	0.9	39
72	Abnormalities of hippocampal signal intensity in patients with familial mesial temporal lobe epilepsy. Brazilian Journal of Medical and Biological Research, 2004, 37, 827-832.	0.7	7

#	Article	IF	CITATIONS
73	Quantification of Hippocampal Signal Intensity in Patients with Mesial Temporal Lobe Epilepsy. Journal of Neuroimaging, 2003, 13, 228-233.	1.0	12
74	Quantification of Hippocampal Signal Intensity in Patients with Mesial Temporal Lobe Epilepsy. , 2003, 13, 228.		1
75	Quantification of hippocampal signal intensity in patients with mesial temporal lobe epilepsy. , 2003, 13, 228-33.		2
76	Paroxysmal fast activity: Does this EEG pattern occur only in Lennox-Gastaut syndrome?. Journal of International Child Neurology Association, 0, , .	0.0	0