John E Baenziger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3778631/publications.pdf

Version: 2024-02-01

196777 263392 2,220 63 29 45 citations h-index g-index papers 65 65 65 1672 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Distinct functional roles for the M4 α-helix from each homologous subunit in the heteropentameric ligand-gated ion channel nAChR. Journal of Biological Chemistry, 2022, 298, 102104.	1.6	1
2	Recent Insight into Lipid Binding and Lipid Modulation of Pentameric Ligand-Gated Ion Channels. Biomolecules, 2022, 12, 814.	1.8	7
3	IUPAB 2021 Symposium 13: ion channels and membrane transporters. Biophysical Reviews, 2021, 13, 871-873.	1.5	1
4	lon channels as lipid sensors: from structures to mechanisms. Nature Chemical Biology, 2020, 16, 1331-1342.	3.9	38
5	The functional role of the $\hat{l}\pm M4$ transmembrane helix in the muscle nicotinic acetylcholine receptor probed through mutagenesis and coevolutionary analyses. Journal of Biological Chemistry, 2020, 295, 11056-11067.	1.6	8
6	Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183304.	1.4	24
7	A lipid site shapes the agonist response of a pentameric ligand-gated ion channel. Nature Chemical Biology, 2019, 15, 1156-1164.	3.9	43
8	An allosteric link connecting the lipid-protein interface to the gating of the nicotinic acetylcholine receptor. Scientific Reports, 2018, 8, 3898.	1.6	19
9	Probing the structure of the uncoupled nicotinic acetylcholine receptor. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 146-154.	1.4	11
10	Biophysics in Canada. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1479-1482.	1.1	0
11	Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function. Scientific Reports, 2017, 7, 450.	1.6	16
12	Functional characterization of two prokaryotic pentameric ligand-gated ion channel chimeras – role of the GLIC transmembrane domain in proton sensing. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 218-227.	1.4	7
13	The Role of Cholesterol in the Activation of Nicotinic Acetylcholine Receptors. Current Topics in Membranes, 2017, 80, 95-137.	0.5	25
14	The M4 Transmembrane α-Helix Contributes Differently to Both the Maturation and Function of Two Prokaryotic Pentameric Ligand-gated Ion Channels. Journal of Biological Chemistry, 2015, 290, 25118-25128.	1.6	25
15	Intramembrane Aromatic Interactions Influence the Lipid Sensitivities of Pentameric Ligand-gated Ion Channels. Journal of Biological Chemistry, 2015, 290, 2496-2507.	1.6	38
16	Role of the Fourth Transmembrane α Helix in the Allosteric Modulation of Pentameric Ligand-Gated Ion Channels. Structure, 2015, 23, 1655-1664.	1.6	29
17	The role of the M4 lipid-sensor in the folding, trafficking, and allosteric modulation of nicotinic acetylcholine receptors. Neuropharmacology, 2015, 96, 157-168.	2.0	35
18	Nicotinic acetylcholine receptor–lipid interactions: Mechanistic insight and biological function. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1806-1817.	1.4	63

#	Article	IF	Citations
19	Gating of Pentameric Ligand-Gated Ion Channels: Structural Insights and Ambiguities. Structure, 2013, 21, 1271-1283.	1.6	101
20	A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors. Nature Chemical Biology, 2013, 9, 701-707.	3.9	89
21	Molecular mechanisms of acetylcholine receptor–lipid interactions: from model membranes to human biology. Biophysical Reviews, 2013, 5, 1-9.	1.5	16
22	Effects of Lipids on the Structure and Function of GLIC and ELIC. Biophysical Journal, 2013, 104, 219a.	0.2	1
23	Structural Sensitivity of a Prokaryotic Pentameric Ligand-gated Ion Channel to Its Membrane Environment. Journal of Biological Chemistry, 2013, 288, 11294-11303.	1.6	34
24	Structural characterization and agonist binding to human $\hat{l}\pm4\hat{l}^22$ nicotinic receptors. Biochemical and Biophysical Research Communications, 2011, 407, 456-460.	1.0	7
25	3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology, 2011, 60, 116-125.	2.0	66
26	Preparation of reconstituted acetylcholine receptor membranes suitable for AFM imaging of lipid–protein interactions. Chemistry and Physics of Lipids, 2010, 163, 117-126.	1.5	6
27	Phospholipase C Activity Affinity Purifies with the Torpedo Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2010, 285, 10337-10343.	1.6	13
28	Cations Mediate Interactions between the Nicotinic Acetylcholine Receptor and Anionic Lipids. Biophysical Journal, 2010, 98, 989-998.	0.2	15
29	Anionic Lipids Allosterically Modulate Multiple Nicotinic Acetylcholine Receptor Conformational Equilibria. Journal of Biological Chemistry, 2009, 284, 33841-33849.	1.6	54
30	A Lipid-dependent Uncoupled Conformation of the Acetylcholine Receptor. Journal of Biological Chemistry, 2009, 284, 17819-17825.	1.6	100
31	Structural characterization of the osmosensor ProP. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1108-1115.	1.4	25
32	Lipid Composition Alters Drug Action at the Nicotinic Acetylcholine Receptor. Molecular Pharmacology, 2008, 73, 880-890.	1.0	39
33	Heterogeneity in the sn-1 carbon chain of platelet-activating factor glycerophospholipids determines pro- or anti-apoptotic signaling in primary neurons. Journal of Lipid Research, 2008, 49, 2250-2258.	2.0	28
34	Expression, Purification, and Structural Characterization of CfrA, a Putative Iron Transporter from Campylobacter jejuni. Journal of Bacteriology, 2008, 190, 5650-5662.	1.0	20
35	The Net Orientation of Nicotinic Receptor Transmembrane α-Helices in the Resting and Desensitized States. Biophysical Journal, 2006, 91, 705-714.	0.2	11
36	Role of Glycosylation and Membrane Environment in Nicotinic Acetylcholine Receptor Stability. Biophysical Journal, 2005, 88, 1755-1764.	0.2	24

#	Article	IF	Citations
37	Membrane Receptor–Ligand Interactions Probed by Attenuated Total Reflectance Infrared Difference Spectroscopy. , 2005, , 325-352.		O
38	Phosphatidic Acid and Phosphatidylserine Have Distinct Structural and Functional Interactions with the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2004, 279, 14967-14974.	1.6	53
39	A rapid method for assessing lipid:protein and detergent:protein ratios in membrane-protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 77-83.	2.5	47
40	Lipid-Protein Interactions at the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2002, 277, 201-208.	1.6	108
41	Dissecting the Chemistry of Nicotinic Receptor-Ligand Interactions with Infrared Difference Spectroscopy. Journal of Biological Chemistry, 2002, 277, 10420-10426.	1.6	20
42	A Conformational Intermediate between the Resting and Desensitized States of the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2001, 276, 4796-4803.	1.6	21
43	Structure of the Pore-forming Transmembrane Domain of a Ligand-gated Ion Channel. Journal of Biological Chemistry, 2001, 276, 23726-23732.	1.6	33
44	Effect of Membrane Lipid Composition on the Conformational Equilibria of the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2000, 275, 777-784.	1.6	134
45	Internal Dynamics of the Nicotinic Acetylcholine Receptor in Reconstituted Membranes. Biochemistry, 1999, 38, 4905-4911.	1.2	29
46	A Structure-Based Approach to Nicotinic Receptor Pharmacology. Molecular Pharmacology, 1999, 55, 348-355.	1.0	24
47	Secondary Structure of the Exchange-Resistant Core from the Nicotinic Acetylcholine Receptor Probed Directly by Infrared Spectroscopy and Hydrogen/Deuterium Exchangeâ€. Biochemistry, 1998, 37, 14815-14822.	1.2	31
48	Anesthetic-induced structural changes in the nicotinic acetylcholine receptor. Toxicology Letters, 1998, 100-101, 179-183.	0.4	4
49	Secondary Structure Analysis of Individual Transmembrane Segments of the Nicotinic Acetylcholine Receptor by Circular Dichroism and Fourier Transform Infrared Spectroscopy. Journal of Biological Chemistry, 1998, 273, 771-777.	1.6	72
50	Desensitization of the Nicotinic Acetylcholine Receptor Mainly Involves a Structural Change in Solvent-Accessible Regions of the Polypeptide Backboneâ€. Biochemistry, 1997, 36, 3617-3624.	1.2	39
51	The selective enhancement and subsequent subtraction of atmospheric water vapour contributions from Fourier transform infrared spectra of proteins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1996, 52, 1347-1356.	2.0	15
52	Structural Effects of Neutral and Anionic Lipids on the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 1996, 271, 24590-24597.	1.6	46
53	Fourier Transform Infrared and Hydrogen/Deuterium Exchange Reveal an Exchange-resistant Core of $\hat{l}\pm$ -Helical Peptide Hydrogens in the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 1995, 270, 29129-29137.	1.6	76
54	Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond. FEBS Letters, 1995, 377, 135-139.	1.3	64

#	Article	IF	CITATION
55	Structure of both the ligand- and lipid-dependent channel-inactive states of the nicotinic acetylcholine receptor probed by FTIR spectroscopy and hydrogen exchange. Biochemistry, 1995, 34, 15142-15149.	1.2	52
56	Secondary Structure of the Nicotinic Acetylcholine Receptor:Implications for Structural Models of a Ligand-Gated Ion Channel. Biochemistry, 1994, 33, 7709-7717.	1.2	49
57	Fourier transform infrared difference spectroscopy of the nicotinic acetylcholine receptor: evidence for specific protein structural changes upon desensitization. Biochemistry, 1993, 32, 5448-5454.	1.2	72
58	Incorporation of the nicotinic acetylcholine receptor into planar multilamellar films: characterization by fluorescence and Fourier transform infrared difference spectroscopy. Biophysical Journal, 1992, 61, 983-992.	0.2	64
59	Molecular motions and dynamics of a diunsaturated acyl chain in a lipid bilayer: implications for the role of polyunsaturation in biological membranes. Biochemistry, 1992, 31, 3377-3385.	1.2	38
60	Average structural and motional properties of a diunsaturated acyl chain in a lipid bilayer: effects of two cis-unsaturated double bonds. Biochemistry, 1991, 30, 894-903.	1.2	43
61	Biosynthesis and characterization of a series of deuterated cis,cis-octadeca-6,9-dienoic acids. Chemistry and Physics of Lipids, 1990, 54, 17-23.	1.5	21
62	Direct measurement of deuterium-deuterium dipolar coupling and analysis of the ordering of a specifically deuterated diunsaturated lipid. Journal of the American Chemical Society, 1988, 110, 8229-8231.	6.6	14
63	Biosynthesis of a specifically deuterated diunsaturated fatty acid (18:2.DELTA.6,9) for deuterium NMR membrane studies. Biochemistry, 1987, 26, 8405-8410.	1.2	12