

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3778501/publications.pdf Version: 2024-02-01

AZIZ CENÃS

#	Article	IF	CITATIONS
1	Plasmon-enhanced photocatalytic and antibacterial activity of gold nanoparticles-decorated hematite nanostructures. Journal of Alloys and Compounds, 2021, 852, 157021.	2.8	34
2	Exploiting the Lability of Metal Halide Perovskites for Doping Semiconductor Nanocomposites. ACS Energy Letters, 2021, 6, 581-587.	8.8	12
3	Synthesis, Bottom up Assembly and Thermoelectric Properties of Sb-Doped PbS Nanocrystal Building Blocks. Materials, 2021, 14, 853.	1.3	5
4	The Importance of Surface Adsorbates in Solutionâ€Processed Thermoelectric Materials: The Case of SnSe. Advanced Materials, 2021, 33, e2106858.	11.1	19
5	Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications. Beilstein Journal of Nanotechnology, 2019, 10, 2004-2013.	1.5	14
6	Synergetic activity enhancement in 2D CuO-Fe2O3 nanocomposites for the photodegradation of rhodamine B. Ceramics International, 2019, 45, 9174-9178.	2.3	34
7	Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH) ₃ :Eu ³⁺ nanoparticles for white light generation. Beilstein Journal of Nanotechnology, 2019, 10, 1200-1210.	1.5	2
8	Tuning Transport Properties in Thermoelectric Nanocomposites through Inorganic Ligands and Heterostructured Building Blocks. ACS Nano, 2019, 13, 6572-6580.	7.3	27
9	Ligand-Mediated Band Engineering in Bottom-Up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion. Journal of the American Chemical Society, 2019, 141, 8025-8029.	6.6	47
10	Robust one-pot synthesis of citrate-stabilized Au@CeO2 hybrid nanocrystals with different thickness and dimensionality. Applied Materials Today, 2019, 15, 445-452.	2.3	9
11	Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Scientific Reports, 2019, 9, 18776.	1.6	13
12	Polarized emission from CsPbBr ₃ nanowire embedded-electrospun PU fibers. Nanotechnology, 2018, 29, 135202.	1.3	35
13	Mesoporous nanocrystalline ZnO microspheres by ethylene glycol mediated thermal decomposition. Advanced Powder Technology, 2018, 29, 3455-3461.	2.0	20
14	Probing the surface reactivity of nanocrystals by the catalytic degradation of organic dyes: the effect of size, surface chemistry and composition. Journal of Materials Chemistry A, 2017, 5, 11917-11929.	5.2	49
15	Polybenzoxazineâ€Derived Nâ€doped Carbon as Matrix for Powderâ€Based Electrocatalysts. ChemSusChem, 2017, 10, 2653-2659.	3.6	16
16	Inorganic Photocatalytic Enhancement: Activated RhB Photodegradation by Surface Modification of SnO2 Nanocrystals with V2O5-like species. Scientific Reports, 2017, 7, 44763.	1.6	17
17	Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 21122-21129.	5.2	73
18	Facile synthesis of ZnO nanostructures and enhancement of their sinterability via short-time cryo-milling. Ceramics International, 2017, 43, 1710-1715.	2.3	5

Azız Genç

#	Article	IF	CITATIONS
19	Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications. Nanophotonics, 2017, 6, 193-213.	2.9	107
20	Pd ₂ Sn [010] nanorods as a highly active and stable ethanol oxidation catalyst. Journal of Materials Chemistry A, 2016, 4, 16706-16713.	5.2	65
21	The Ethylhexanoate Route to Metal Oxide Nanocrystals: Synthesis of CoO Nanooctahedra from Coll 2-Ethylhexanoate. European Journal of Inorganic Chemistry, 2016, 2016, 3963-3968.	1.0	5
22	One-pot polyol synthesis of highly monodisperse short green silver nanorods. Chemical Communications, 2016, 52, 10960-10963.	2.2	20
23	Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs. ACS Applied Materials & Interfaces, 2016, 8, 19579-19586.	4.0	295
24	High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nature Communications, 2016, 7, 10766.	5.8	224
25	Mn ₃ O ₄ @CoMn ₂ O ₄ –Co _{<i>x</i>} O _{<i>Partial Cation Exchange Synthesis and Electrocatalytic Properties toward the Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces, 2016, 8, 17435-17444.</i>}	y4.0	>Nanopartic 72
26	Acetone sensors based on TiO2 nanocrystals modified with tungsten oxide species. Journal of Alloys and Compounds, 2016, 665, 345-351.	2.8	32
27	Scalable Heating-Up Synthesis of Monodisperse Cu ₂ ZnSnS ₄ Nanocrystals. Chemistry of Materials, 2016, 28, 720-726.	3.2	43
28	Tuning the Plasmonic Response up: Hollow Cuboid Metal Nanostructures. ACS Photonics, 2016, 3, 770-779.	3.2	49
29	Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors. Nano Energy, 2016, 22, 189-201.	8.2	102
30	Co–Cu Nanoparticles: Synthesis by Galvanic Replacement and Phase Rearrangement during Catalytic Activation. Langmuir, 2016, 32, 2267-2276.	1.6	37
31	In situ template synthesis of gold nanoparticles using a bis-imidazolium amphiphile-based hydrogel. Journal of Colloid and Interface Science, 2015, 446, 53-58.	5.0	9
32	Size and Aspect Ratio Control of Pd ₂ Sn Nanorods and Their Water Denitration Properties. Langmuir, 2015, 31, 3952-3957.	1.6	29
33	High-yield synthesis and optical properties of g-C ₃ N ₄ . Nanoscale, 2015, 7, 12343-12350.	2.8	303
34	Surface modification, heterojunctions, and other structures: composing metal oxide nanocrystals for chemical sensors. Proceedings of SPIE, 2015, , .	0.8	0
35	Surface Modification of TiO ₂ Nanocrystals by WO _{<i>x</i>} Coating or Wrapping: Solvothermal Synthesis and Enhanced Surface Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 6898-6908.	4.0	21
36	What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes. Energy and Environmental Science, 2015, 8, 3242-3254.	15.6	147

Azız Genç

#	Article	IF	CITATIONS
37	Cu ₂ ZnSnS ₄ –PtM (M = Co, Ni) Nanoheterostructures for Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 21882-21888.	1.5	50
38	Cu ₂ ZnSnS ₄ –Ag ₂ S Nanoscale p–n Heterostructures as Sensitizers for Photoelectrochemical Water Splitting. Langmuir, 2015, 31, 10555-10561.	1.6	55
39	Acetone Sensing with TiO2-WO3 Nanocomposites: An Example of Response Enhancement by Inter-oxide Cooperative Effects. Procedia Engineering, 2014, 87, 803-806.	1.2	11
40	Solvothermal, Chloroalkoxide-based Synthesis of Monoclinic WO ₃ Quantum Dots and Gas-Sensing Enhancement by Surface Oxygen Vacancies. ACS Applied Materials & Interfaces, 2014, 6, 16808-16816.	4.0	78
41	Characterization of Ni-W solid solution alloy powders and sintered compacts synthesized via mechanically activated hydrogen reduction of NiO-WO3 mixtures. Metals and Materials International, 2013, 19, 813-819.	1.8	5
42	Synthesis of W-3 wt% Mn-2 wt% VC composites by high energy milling and sintering. Metals and Materials International, 2013, 19, 533-541.	1.8	5
43	Microstructural evolution of mechanically alloyed and spark plasma sintered Ni–W alloy matrix composites. Journal of Alloys and Compounds, 2013, 571, 159-167.	2.8	7
44	Fabrication of in situ Ni(W)–WC nano composites via mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2012, 542, 97-104.	2.8	24
45	Fabrication and characterization of Ni–W solid solution alloys via mechanical alloying and pressureless sintering. Materials & Design, 2012, 42, 495-504.	5.1	36
46	Effects of Al2O3 addition on the microstructure and properties of Ni activated sintered W matrix composites. International Journal of Refractory Metals and Hard Materials, 2012, 32, 33-38.	1.7	16
47	Comparison of the ORR Activity of Carbon Supported PtCo/C and PtSnCo/C Electrocatalysts for PEM Fuel Cells. ECS Transactions, 2011, 41, 1031-1042.	0.3	7
48	Fabrication and properties of mechanically alloyed and Ni activated sintered W matrix composites reinforced with Y2O3 and TiB2 particles. Materials Characterization, 2010, 61, 740-748.	1.9	27
49	Decarburization of TiC in Ni activated sintered W–xTiC (x=0, 5, 10, 15 wt%) composites and the effects of heat treatment on the microstructural and physical properties. International Journal of Refractory Metals and Hard Materials, 2010, 28, 451-458.	1.7	16
50	Characterization investigations during mechanical alloying and sintering of Ni–W solid solution alloys dispersed with WC and Y2O3 particles. Journal of Alloys and Compounds, 2010, 508, 162-171.	2.8	23
51	Effects of La ₂ 0 ₃ Addition on the Microstructure and Properties of Activated Sintered W-Ni Compacts. Solid State Phenomena, 0, 194, 217-221.	0.3	9
52	Development of Mechanically Alloyed and Sintered W-1 wt.% Ni Matrix Composites Reinforced with TiB ₂ . Solid State Phenomena, 0, 194, 194-198.	0.3	7