Matthew F Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3778363/publications.pdf

Version: 2024-02-01

28 papers 4,807 citations

236833 25 h-index 501076 28 g-index

28 all docs

28 docs citations

times ranked

28

4598 citing authors

#	Article	IF	CITATIONS
1	Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and $\hat{l}\pm 1$ -Syntrophin Mediated by PDZ Domains. Cell, 1996, 84, 757-767.	13.5	1,557
2	Interference by Huntingtin and Atrophin-1 with CBP-Mediated Transcription Leading to Cellular Toxicity. Science, 2001, 291, 2423-2428.	6.0	1,035
3	Differential Association of Syntrophin Pairs with the Dystrophin Complex. Journal of Cell Biology, 1997, 138, 81-93.	2.3	224
4	Two forms of mouse syntrophin, a 58 kd dystrophin-associated protein, differ in primary structure and tissue distribution. Neuron, 1993, 11, 531-540.	3.8	220
5	Nuclear Targeting of Mutant Huntingtin Increases Toxicity. Molecular and Cellular Neurosciences, 1999, 14, 121-128.	1.0	177
6	Isoform Diversity of Dystrobrevin, the Murine 87-kDa Postsynaptic Protein. Journal of Biological Chemistry, 1996, 271, 7802-7810.	1.6	145
7	Label-free whole-cell assays: expanding the scope of GPCR screening. Drug Discovery Today, 2010, 15, 704-716.	3.2	145
8	Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology Letters, 2013, 219, 49-58.	0.4	141
9	Evaluating Cellular Impedance Assays for Detection of GPCR Pleiotropic Signaling and Functional Selectivity. Journal of Biomolecular Screening, 2009, 14, 246-255.	2.6	116
10	Differential Membrane Localization and Intermolecular Associations of \hat{l}_{\pm} -Dystrobrevin Isoforms in Skeletal Muscle. Journal of Cell Biology, 1998, 142, 1269-1278.	2.3	111
11	\hat{l}^2 -Dystrobrevin, a New Member of the Dystrophin Family. Journal of Biological Chemistry, 1997, 272, 31561-31569.	1.6	99
12	An Impedance-Based Cellular Assay Using Human iPSC-Derived Cardiomyocytes to Quantify Modulators of Cardiac Contractility. Toxicological Sciences, 2014, 142, 331-338.	1.4	92
13	Human Stem Cell-Derived Cardiomyocytes in Cellular Impedance Assays: Bringing Cardiotoxicity Screening to the Front Line. Cardiovascular Toxicology, 2015, 15, 127-139.	1.1	84
14	Evaluation of Cellular Dielectric Spectroscopy, a Whole-Cell, Label-Free Technology for Drug Discovery on Gi-Coupled GPCRs. Journal of Biomolecular Screening, 2007, 12, 312-319.	2.6	82
15	Isolation of a 40-kDa Huntingtin-associated Protein. Journal of Biological Chemistry, 2001, 276, 3188-3194.	1.6	79
16	Inducible PC12 cell model of Huntington's disease shows toxicity and decreased histone acetylation. NeuroReport, 2003, 14, 565-568.	0.6	68
17	Comparing Label-Free Biosensors for Pharmacological Screening With Cell-Based Functional Assays. Assay and Drug Development Technologies, 2010, 8, 219-227.	0.6	68
18	Deconvoluting Kinase Inhibitor Induced Cardiotoxicity. Toxicological Sciences, 2017, 158, 213-226.	1.4	45

#	Article	IF	CITATIONS
19	Developing i>in vitro i>assays to transform gastrointestinal safety assessment: potential for microphysiological systems. Lab on A Chip, 2020, 20, 1177-1190.	3.1	44
20	Identification of short-acting \hat{I}^{2} -opioid receptor antagonists with anxiolytic-like activity. European Journal of Pharmacology, 2011, 661, 27-34.	1.7	43
21	Cardiovascular Toxicity Induced by Kinase Inhibitors: Mechanisms and Preclinical Approaches. Chemical Research in Toxicology, 2020, 33, 125-136.	1.7	39
22	Purification, cDNA sequence, and tissue distribution of rat uroguanylin. Regulatory Peptides, 1997, 68, 45-56.	1.9	37
23	Evaluation of Cellular Impedance Measures of Cardiomyocyte Cultures for Drug Screening Applications. Assay and Drug Development Technologies, 2012, 10, 525-532.	0.6	34
24	Cellular Impedance Assays for Predictive Preclinical Drug Screening of Kinase Inhibitor Cardiovascular Toxicity. Toxicological Sciences, 2013, 135, 402-413.	1.4	33
25	Human 3D Gastrointestinal Microtissue Barrier Function As a Predictor of Drug-Induced Diarrhea. Toxicological Sciences, 2019, 168, 3-17.	1.4	33
26	Discovery of 8-azabicyclo[3.2.1]octan-3-yloxy-benzamides as selective antagonists of the kappa opioid receptor. Part 1. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5847-5852.	1.0	22
27	SAR development of a series of 8-azabicyclo[3.2.1]octan-3-yloxy-benzamides as kappa opioid receptor antagonists. Part 2. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5405-5410.	1.0	17
28	Human ileal organoid model recapitulates clinical incidence of diarrhea associated with small molecule drugs. Toxicology in Vitro, 2020, 68, 104928.	1.1	17