Ana M Mata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3778279/publications.pdf Version: 2024-02-01

ΔΝΑ Μ ΜΑΤΑ

#	Article	IF	CITATIONS
1	Design and Experimental Evaluation of a Peptide Antagonist against Amyloid β(1–42) Interactions with Calmodulin and Calbindin-D28k. International Journal of Molecular Sciences, 2022, 23, 2289.	4.1	4
2	The Plasma Membrane Ca2+-ATPase, a Molecular Target for Tau-induced Cytosolic Calcium Dysregulation. Neuroscience, 2022, , .	2.3	3
3	Special Issue "Molecular and Cellular Mechanisms of Action of Markers of Tissue Degeneration― International Journal of Molecular Sciences, 2022, 23, 6358.	4.1	0
4	The endoplasmic reticulum Ca ²⁺ â€ <scp>ATPase SERCA2b</scp> is upregulated in activated microglia and its inhibition causes opposite effects on migration and phagocytosis. Glia, 2021, 69, 842-857.	4.9	10
5	Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis. International Journal of Molecular Sciences, 2021, 22, 1984.	4.1	14
6	The Relevance of Amyloid β-Calmodulin Complexation in Neurons and Brain Degeneration in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 4976.	4.1	13
7	Sorcin Activates the Brain PMCA and Blocks the Inhibitory Effects of Molecular Markers of Alzheimer's Disease on the Pump Activity. International Journal of Molecular Sciences, 2021, 22, 6055.	4.1	9
8	Gold Compounds Inhibit the Ca2+-ATPase Activity of Brain PMCA and Human Neuroblastoma SH-SY5Y Cells and Decrease Cell Viability. Metals, 2021, 11, 1934.	2.3	7
9	Methylene Blue Blocks and Reverses the Inhibitory Effect of Tau on PMCA Function. International Journal of Molecular Sciences, 2019, 20, 3521.	4.1	12
10	Functional interplay between plasma membrane Ca2+-ATPase, amyloid β-peptide and tau. Neuroscience Letters, 2018, 663, 55-59.	2.1	20
11	Methylene blue activates the PMCA activity and cross-interacts with amyloid β-peptide, blocking Aβ-mediated PMCA inhibition. Neuropharmacology, 2018, 139, 163-172.	4.1	15
12	STIM1 deficiency is linked to Alzheimer's disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca2+ entry. Journal of Molecular Medicine, 2018, 96, 1061-1079.	3.9	54
13	High affinity binding of amyloid \hat{l}^2 -peptide to calmodulin: Structural and functional implications. Biochemical and Biophysical Research Communications, 2017, 486, 992-997.	2.1	37
14	Phospholipids and calmodulin modulate the inhibition of PMCA activity by tau. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1028-1035.	4.1	16
15	An improved method for expression and purification of functional human Ca2+ transporter PMCA4b in Saccharomyces cerevisiae. Protein Expression and Purification, 2016, 120, 51-58.	1.3	2
16	Inhibition of PMCA activity by tau as a function of aging and Alzheimer's neuropathology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1465-1476.	3.8	30
17	Presynaptic Control of Glycine Transporter 2 (GlyT2) by Physical and Functional Association with Plasma Membrane Ca2+-ATPase (PMCA) and Na+-Ca2+ Exchanger (NCX). Journal of Biological Chemistry, 2014, 289, 34308-34324.	3.4	26
18	Heterologous Microarray Analysis of Transcriptome Alterations in <i>Mus spretus</i> Mice Living in an Industrial Settlement. Environmental Science & Technology, 2014, 48, 2183-2192.	10.0	13

ΑΝΑ Μ ΜΑΤΑ

#	Article	IF	CITATIONS
19	High levels of <scp>M</scp> n ²⁺ inhibit secretory pathway <scp>C</scp> a ²⁺ / <scp>M</scp> n ²⁺ â€ <scp>ATP</scp> ase (<scp>SPCA</scp>) activity and cause Golgi fragmentation in neurons and glia. Journal of Neurochemistry, 2012, 123, 824-836.	3.9	16
20	Calmodulin Prevents the Inhibitory Effect of Neurotoxic β-Amyloid Peptide on Synaptosomal Plasma Membrane Ca2+-ATPase. Biophysical Journal, 2012, 102, 508a.	0.5	0
21	Calmodulin antagonizes amyloid-β peptides-mediated inhibition of brain plasma membrane Ca2+-ATPase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 961-969.	3.8	40
22	Evaluation of manganese uptake and toxicity in mouse brain during continuous MnCl ₂ administration using osmotic pumps. Contrast Media and Molecular Imaging, 2012, 7, 426-434.	0.8	44
23	Impairment of the activity of the plasma membrane Ca2+-ATPase in Alzheimer's disease. Biochemical Society Transactions, 2011, 39, 819-822.	3.4	23
24	Impairment of PMCA Activity by Amyloid β-Peptide in Membranes from Alzheimer's Disease-Affected Brain and from Other Model Systems. Biophysical Journal, 2010, 98, 170a.	0.5	0
25	Plasma membrane Ca ²⁺ -ATPases in the nervous system during development and ageing. World Journal of Biological Chemistry, 2010, 1, 229.	4.3	20
26	Silencing the SPCA1 (Secretory Pathway Ca ²⁺ -ATPase Isoform 1) Impairs Ca ²⁺ Homeostasis in the Golgi and Disturbs Neural Polarity. Journal of Neuroscience, 2009, 29, 12174-12182.	3.6	57
27	Altered Ca ²⁺ dependence of synaptosomal plasma membrane Ca ²⁺ â€ATPase in human brain affected by Alzheimer's disease. FASEB Journal, 2009, 23, 1826-1834.	0.5	63
28	Ontogeny of ATP hydrolysis and isoform expression of the Plasma Membrane Ca2+-ATPase in mouse brain. BMC Neuroscience, 2009, 10, 112.	1.9	24
29	Activity and localization of the Secretory Pathway Ca2+-ATPase isoform 1 (SPCA1) in different areas of the mouse brain during postnatal development. Molecular and Cellular Neurosciences, 2008, 38, 461-473.	2.2	29
30	Developmental distribution of plasma membrane Ca2+-ATPase isoforms in chick cerebellum. Developmental Dynamics, 2007, 236, 1227-1236.	1.8	19
31	Functional and immunocytochemical evidence for the expression and localization of the secretory pathway Ca2+-ATPase isoform 1 (SPCA1) in cerebellum relative to other Ca2+pumps. Journal of Neurochemistry, 2007, 103, 1009-1018.	3.9	31
32	The Plasma Membrane Ca2+-ATPase Isoform 4 Is Localized in Lipid Rafts of Cerebellum Synaptic Plasma Membranes. Journal of Biological Chemistry, 2006, 281, 447-453.	3.4	90
33	Localization of intracellular and plasma membrane Ca 2+ â€ATPases in the cerebellum. Cerebellum, 2005, 4, 82-89.	2.5	2
34	A developmental profile of the levels of calcium pumps in chick cerebellum. Journal of Neurochemistry, 2005, 95, 673-683.	3.9	21
35	Calcium pumps in the central nervous system. Brain Research Reviews, 2005, 49, 398-405.	9.0	41
36	Glycogen Synthase Kinase-3 Plays a Crucial Role in Tau Exon 10 Splicing and Intranuclear Distribution of SC35. Journal of Biological Chemistry, 2004, 279, 3801-3806.	3.4	122

Ana M Mata

#	Article	IF	CITATIONS
37	Localization of endoplasmic reticulum and plasma membrane Ca2+-ATPases in subcellular fractions and sections of pig cerebellum. European Journal of Neuroscience, 2004, 19, 542-551.	2.6	28
38	Ca2+Transport by the Synaptosomal Plasma Membrane Ca2+-ATPase and the Effect of Thioridazineâ€. Biochemistry, 2004, 43, 2353-2358.	2.5	19
39	The interaction of ethanol with reconstituted synaptosomal plasma membrane Ca2+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1665, 75-80.	2.6	25
40	Effect of spermine on the activity of synaptosomal plasma membrane Ca2+-ATPase reconstituted in neutral or acidic phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1611, 197-203.	2.6	10
41	Characterization of the Intracellular and the Plasma Membrane Ca2+-ATPases in Fractionated Pig Brain Membranes Using Calcium Pump Inhibitors. Archives of Biochemistry and Biophysics, 1998, 351, 272-278.	3.0	22
42	Ca2+ Transport by Reconstituted Synaptosomal ATPase Is Associated with H+ Countertransport and Net Charge Displacement. Journal of Biological Chemistry, 1998, 273, 18230-18234.	3.4	65
43	EVIDENCE THAT AN ANTI-SERCA1 MONOCLONAL ANTIBODY RECOGNIZES THE SERCA2b CALCIUM PUMP IN PIG BRAIN. Biochemical Society Transactions, 1997, 25, 169S-169S.	3.4	0
44	Purification of the synaptosomal plasma membrane (Ca2+ + Mg2+)-ATPase from pig brain. Biochemical Journal, 1996, 315, 183-187.	3.7	42
45	Identification of two types of Ca2+ transport ATPases in pig brain by specific antibodies. Biochemical Society Transactions, 1995, 23, 571S-571S.	3.4	2
46	The Modulation of Ca2+ Binding to Sarcoplasmic Reticulum ATPase by ATP Analogues Is pH-dependent. Journal of Biological Chemistry, 1995, 270, 27160-27164.	3.4	22
47	Localization of Cys-344 on the (Ca2+ â^'Mg2+)-ATPase of sarcoplasmic reticulum using resonance energy transfer. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1147, 6-12.	2.6	18
48	Evidence for the lumenal location of the 53 kDa glycoprotein of sarcoplasmic reticulum. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1146, 265-274.	2.6	0
49	Reactivity of lysyl residues on the (calcium-magnesium)-ATPase to 7-amino-4-methylcoumarin-3-acetic acid succinimidyl ester. Biochemistry, 1993, 32, 356-362.	2.5	17
50	Labeling the calcium-magnesium-ATPase of sarcoplasmic reticulum at Glu-439 with 5-(bromomethyl)fluorescein. Biochemistry, 1993, 32, 6095-6103.	2.5	21
51	Studies of the structure and function of sarcoplasmic reticulum (Ca2+-Mg2+)-ATPase using immunological approaches. Biochemical Society Transactions, 1992, 20, 550-554.	3.4	3
52	An examination of the transmembranous organisation of the sarcoplasmic reticulum (Ca2+-Mg2+)-ATPase using antipeptide antibodies. Biochemical Society Transactions, 1992, 20, 308S-308S.	3.4	0
53	Mapping epitopes on the (Ca2+Mg2+)-ATPase of sarcoplasmic reticulum using fusion proteins. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 585-592.	2.4	11
54	Chemical crosslinking and enzyme kinetics provide no evidence for a regulatory role for the 53 kDa glycoprotein of sarcoplasmic reticulum in calcium transport. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1064, 139-147.	2.6	13

ΑΝΑ Μ ΜΑΤΑ

#	Article	IF	CITATIONS
55	The effect of a monoclonal antibody on specific steps of the reaction sequence of the (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum. Biochemical Society Transactions, 1991, 19, 205S-205S.	3.4	0
56	Effect of the detergent C12E8 on the binding of monoclonal antibodies to the (Ca2+-Mg2+)-ATPase of rabbit skeletal sarcoplasmic reticulum. Biochemical Society Transactions, 1990, 18, 603-603.	3.4	2
57	Distribution of two distinct Ca2+ -ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaff in cells. Nature, 1989, 342, 72-74.	27.8	205
58	Evidence for the cytoplasmic location of the N- and C-terminal segments of sarcoplasmic reticulum (Ca2+î—,Mg2+)-ATPase. Biochemical and Biophysical Research Communications, 1989, 161, 683-688.	2.1	46
59	Probing the nucleotide-binding site of sarcoplasmic reticulum (Ca2+ -Mg2+)-ATPase with anti-fluorescein antibodies. FEBS Letters, 1989, 253, 273-275.	2.8	11
60	Use of anti-peptide antibodies to study the transmembranous topography and structure-activity relationships of (Ca2+-Mg2+)-ATPase. Biochemical Society Transactions, 1989, 17, 708-709.	3.4	3
61	Use of antibodies to detect chemically cross-linked products from sarcoplasmic reticulum. Biochemical Society Transactions, 1989, 17, 1103-1104.	3.4	0
62	Probing the nucleotide binding site of sarcoplasmic reticulum (Ca2+ -Mg2)-ATPase with anti-fluorescein antibodies. Biochemical Society Transactions, 1989, 17, 1105-1106.	3.4	0
63	Effect of monoclonal antibodies raised against Ca2+,Mg2+-ATPase from rabbit skeletal muscle sarcoplasmic reticulum on ATPase activity and its correlation with epitope location. Biochemical Society Transactions, 1988, 16, 771-772.	3.4	0
64	The position of the ATP binding site on the (Ca2+ + Mg2+)-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 1987, 897, 207-216.	2.6	68
65	The redox interconversion mechanism of Saccahromyces cerevisiae glutathione reductase. FEBS Journal, 1985, 151, 275-281.	0.2	21
66	Dependence of the fluorescence of fluorescein labelled (Ca2+, Mg2+)-ATPase upon the lipid to protein ratio in sarcoplasmic reticulum reconstituted systems. Biochemical and Biophysical Research Communications, 1985, 133, 176-182.	2.1	14
67	Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Archives of Biochemistry and Biophysics, 1984, 228, 1-12.	3.0	136